Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurosci Biobehav Rev ; 164: 105844, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106940

RESUMEN

This systematic review explored the impact of maternal immune activation (MIA) on learning and memory behavior in offspring, with a particular focus on sexual dimorphism. We analyzed 20 experimental studies involving rodent models (rats and mice) exposed to either lipopolysaccharide (LPS) or POLY I:C during gestation following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our findings reveal that most studies report a detrimental impact of MIA on the learning and memory performance of offspring, highlighting the significant role of prenatal environmental factors in neurodevelopment. Furthermore, this review underscores the complex effects of sex, with males often exhibiting more pronounced cognitive impairment compared to females. Notably, a small subset of studies report enhanced cognitive function following MIA, suggesting complex, context-dependent outcomes of prenatal immune challenges. This review also highlights sex differences caused by the effects of MIA in terms of cytokine responses, alterations in gene expression, and differences in microglial responses as factors that contribute to the cognitive outcomes observed.


Asunto(s)
Aprendizaje , Memoria , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Aprendizaje/fisiología , Memoria/fisiología , Caracteres Sexuales , Ratones , Lipopolisacáridos/farmacología , Poli I-C/farmacología , Ratas , Masculino
2.
Behav Brain Res ; 467: 115020, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38679144

RESUMEN

Prolonged consumption of diets high in saturated fat and sugar has been related to obesity and overweight, which in turn are linked to cognitive impairment in both humans and rodents. This has become a current issue, especially in children and adolescents, because these stages are crucial to neurodevelopmental processes and programming of adult behavior. To evaluate the effects of gestational and early exposure to an obesogenic diet, three groups with different dietary patterns were established: high-fat and high-sucrose diet (HFS), standard diet (SD), and a dietary shift from a high-fat, high-sucrose diet to a standard diet after weaning (R). Spatial learning and behavioral flexibility in adult male and female Wistar rats were evaluated using the Morris water maze (MWM) at PND 60. Furthermore, regional brain oxidative metabolism was assessed in the prefrontal cortex and the hippocampus. Contrary to our hypothesis, the HFS diet groups showed similar performance on the spatial learning task as the other groups, although they showed impaired cognitive flexibility. The HFS group had increased brain metabolic capacity compared to that of animals fed the standard diet. Shifting from the HFS diet to the SD diet after weaning restored the brain metabolic capacity in both sexes to levels similar to those observed in animals fed the SD diet. In addition, animals in the R group performed similarly to those fed the SD diet in the Morris water maze in both tasks. However, dietary shift from HFS diet to standard diet after weaning had only moderate sex-dependent effects on body weight and fat distribution. In conclusion, switching from an HFS diet to a balanced diet after weaning would have beneficial effects on behavioral flexibility and brain metabolism, without significant sex differences.


Asunto(s)
Encéfalo , Dieta Alta en Grasa , Efectos Tardíos de la Exposición Prenatal , Ratas Wistar , Destete , Animales , Femenino , Masculino , Dieta Alta en Grasa/efectos adversos , Embarazo , Ratas , Encéfalo/metabolismo , Aprendizaje por Laberinto/fisiología , Sacarosa en la Dieta/administración & dosificación , Conducta Animal/fisiología , Corteza Prefrontal/metabolismo , Hipocampo/metabolismo
3.
Psicothema ; 36(2): 133-144, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38661160

RESUMEN

BACKGROUND: Exposure to early life stress (ELS) and maternal consumption of a high-fat and high-sugar diet can have detrimental effects on adult emotional responses. The microbiota and gut-brain axis have been proposed as playing a mediating role in the regulation of stress and emotion. METHOD: Young male rats were exposed to maternal separation (MS) together with maternal and postnatal consumption of a HFS diet (45%kcal saturated fat, 17%kcal sucrose). Anxiety-like behaviour was evaluated using an elevated zero-maze, and depression-like behaviour using the forced-swim and sucrose preference tests. Microbiota composition and derived metabolites were also analysed in faecal samples using a gas chromatograph and mass spectrometry. RESULTS: Combined exposure to MS and lifelong consumption of a HFS diet partially reversed the abnormal anxiety-like and depression-like behaviours in early adulthood caused by each adverse factor alone. Diet composition had a greater negative impact than ELS exposure on the gut microbiota, and both environmental factors interacted with microbiota composition partially counteracting their negative effects. CONCLUSIONS: The effects of exposure to early life stress and a HFS diet independently are partially reversed after the combination of both factors. These results suggest that ELS and diet interact to modulate adult stress response and gut microbiota.


Asunto(s)
Ansiedad , Depresión , Dieta Occidental , Microbioma Gastrointestinal , Privación Materna , Estrés Psicológico , Animales , Masculino , Dieta Occidental/efectos adversos , Ratas , Ansiedad/microbiología , Depresión/microbiología , Emociones , Ratas Wistar , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA