Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharmacol ; 94(2): 823-833, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29853495

RESUMEN

Kynurenic acid (KYNA) plays a significant role in maintaining normal brain function, and abnormalities in KYNA levels have been associated with various central nervous system disorders. Confirmation of its causality in human diseases requires safe and effective modulation of central KYNA levels in the clinic. The kynurenine aminotransferases (KAT) II enzyme represents an attractive target for pharmacologic modulation of central KYNA levels; however, KAT II and KYNA turnover kinetics, which could contribute to the duration of pharmacologic effect, have not been reported. In this study, the kinetics of central KYNA-lowering effect in rats and nonhuman primates (NHPs, Cynomolgus macaques) was investigated using multiple KAT II irreversible inhibitors as pharmacologic probes. Mechanistic pharmacokinetic-pharmacodynamic analysis of in vivo responses to irreversible inhibition quantitatively revealed that 1) KAT II turnover is relatively slow [16-76 hours' half-life (t1/2)], whereas KYNA is cleared more rapidly from the brain (<1 hour t1/2) in both rats and NHPs, 2) KAT II turnover is slower in NHPs than in rats (76 hours vs. 16 hours t1/2, respectively), and 3) the percent contribution of KAT II to KYNA formation is constant (∼80%) across rats and NHPs. Additionally, modeling results enabled establishment of in vitro-in vivo correlation for both enzyme turnover rates and drug potencies. In summary, quantitative translational analysis confirmed the feasibility of central KYNA modulation in humans. Model-based analysis, where system-specific properties and drug-specific properties are mechanistically separated from in vivo responses, enabled quantitative understanding of the KAT II-KYNA pathway, as well as assisted development of promising candidates to test KYNA hypothesis in humans.


Asunto(s)
Encéfalo/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Ácido Quinurénico/análisis , Transaminasas/metabolismo , Animales , Química Encefálica/efectos de los fármacos , Células Cultivadas , Cromatografía Liquida , Inhibidores Enzimáticos/farmacología , Femenino , Semivida , Humanos , Macaca fascicularis , Masculino , Pirazoles/administración & dosificación , Pirazoles/farmacología , Ratas , Espectrometría de Masas en Tándem , Transaminasas/antagonistas & inhibidores
2.
Bioorg Med Chem Lett ; 25(10): 2106-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25881819

RESUMEN

The dopamine D1 receptor is a G protein-coupled receptor that regulates intracellular signaling via agonist activation. Although the number of solved GPCR X-ray structures has been steadily increasing, still no structure of the D1 receptor exists. We have used site-directed mutagenesis of 12 orthosteric vicinity residues of possible importance to G protein-coupled activation to examine the function of prototypical orthosteric D1 agonists and partial agonists. We find that residues from four different regions of the D1 receptor make significant contributions to agonist function. All compounds studied, which are catechol-amines, are found to interact with the previously identified residues: the conserved D103(3.32), as well as the trans-membrane V serine residues. Additional key interactions are found for trans-membrane VI residues F288(6.51), F289(6.52) and N292(6.55), as well as the extra-cellular loop residue L190(ECL2). Molecular dynamics simulations of a D1 homology model have been used to help put the ligand-residue interactions into context. Finally, we considered the rescaling of fold-shift data as a method to account for the change in the size of the mutated side-chain and found that this rescaling helps to relate the calculated ligand-residue energies with observed experimental fold-shifts.


Asunto(s)
Agonistas de Dopamina/farmacología , Modelos Moleculares , Mutagénesis , Receptores de Dopamina D1/agonistas , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Ratas , Receptores de Dopamina D1/química
3.
Bioorg Med Chem Lett ; 23(7): 1961-6, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23466229

RESUMEN

The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Pirazoles/farmacología , Transaminasas/antagonistas & inhibidores , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Transaminasas/metabolismo
4.
J Med Chem ; 61(24): 11384-11397, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30431269

RESUMEN

The discovery of D1 subtype-selective agonists with drug-like properties has been an enduring challenge for the greater part of 40 years. All known D1-selective agonists are catecholamines that bring about receptor desensitization and undergo rapid metabolism, thus limiting their utility as a therapeutic for chronic illness such as schizophrenia and Parkinson's disease. Our high-throughput screening efforts on D1 yielded a single non-catecholamine hit PF-4211 (6) that was developed into a series of potent D1 receptor agonist leads with high oral bioavailability and CNS penetration. An important structural feature of this series is the locked biaryl ring system resulting in atropisomerism. Disclosed herein is a summary of our hit-to-lead efforts on this series of D1 activators culminating in the discovery of atropisomer 31 (PF-06256142), a potent and selective orthosteric agonist of the D1 receptor that has reduced receptor desensitization relative to dopamine and other catechol-containing agonists.


Asunto(s)
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacología , Receptores de Dopamina D1/agonistas , Animales , Disponibilidad Biológica , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Perros , Agonistas de Dopamina/efectos adversos , Relación Dosis-Respuesta a Droga , Células HEK293 , Semivida , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Receptores de Dopamina D1/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
5.
Nat Commun ; 9(1): 674, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445200

RESUMEN

Selective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive. Here we report a novel series of selective, potent non-catechol D1R agonists with promising in vivo pharmacokinetic properties. These ligands stimulate adenylyl cyclase signaling and are efficacious in a rodent model of Parkinson's disease after oral administration. They exhibit distinct binding to the D1R orthosteric site and a novel functional profile including minimal receptor desensitization, reduced recruitment of ß-arrestin, and sustained in vivo efficacy. These results reveal a novel class of D1 agonists with favorable drug-like properties, and define the molecular basis for catechol-specific recruitment of ß-arrestin to D1Rs.


Asunto(s)
Membrana Celular/efectos de los fármacos , Agonistas de Dopamina/farmacología , Receptores de Dopamina D1/agonistas , beta-Arrestinas/metabolismo , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Agonistas de Dopamina/química , Agonistas de Dopamina/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Estructura Molecular , Mutación , Ensayo de Unión Radioligante/métodos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo
6.
ACS Med Chem Lett ; 4(1): 37-40, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24900560

RESUMEN

A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.

7.
ACS Med Chem Lett ; 3(3): 187-92, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900455

RESUMEN

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.

8.
Adv Ther ; 27(3): 168-80, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20429046

RESUMEN

INTRODUCTION: CD44 is a cell adhesion molecule believed to play a critical role in T cell and monocyte infiltration in the inflammatory process. The reduction of CD44 expression or its ability to properly interact with its key ligand, hyaluronic acid (HA), inhibits migration and subsequent activation of cells within sites of inflammation. CD44-deficient mice exhibit decreased disease in a mouse arthritis model. METHODS: Accordingly, we developed PF-03475952, a fully human IgG2 anti-CD44 monoclonal antibody (mAb). RESULTS: Binding of PF-03475952 to CD44 inhibits binding of HA and induces loss of CD44 from the cell surface. PF-03475952 also passed a series of safety pharmacology assays designed to assess the risk of the mAb to bind Fc gamma receptors, stimulate cytokine release from human whole blood, and stimulate cytokine release from peripheral blood mononuclear cells (PBMC) using plate-bound antibodies. The latter assay was designed specifically to evaluate the risk of cytokine storm that had been observed with TGN1412 (immunostimulatory CD28 superagonist mAb). PF-003475952 exhibits high-affinity binding to both human and cynomolgus monkey CD44, but does not cross-react with rodent CD44. Thus, a rat anti-mouse CD44 mAb was used to demonstrate a dose-dependent decrease of disease in mouse collagen-induced arthritis. Importantly, efficacy was correlated with >50% loss of cell surface CD44 on circulating cells. Loss of CD44 expression on CD3+ lymphocytes was monitored following a single dose of PF-03475952 in cynomolgus monkeys as a pharmacodynamic marker. The recovery of CD44 expression was found to be dose-dependent. PF-03475952 doses of 1, 10, and 100 mg/kg reduced CD44 expression below 50% for 218, 373, and >504 hours, respectively. CONCLUSION: Targeting of CD44 is a unique mechanism of action in the treatment of inflammatory diseases and is expected to reduce joint damage induced by inflammatory mediators, resulting in disease modification in inflammatory diseases such as rheumatoid arthritis.


Asunto(s)
Antiinflamatorios/farmacología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Artritis Experimental/tratamiento farmacológico , Receptores de Hialuranos/inmunología , Inmunoglobulina G/farmacología , Animales , Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/uso terapéutico , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Citocinas/sangre , Ensayo de Inmunoadsorción Enzimática , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Inmunoglobulina G/uso terapéutico , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos DBA , Activación Plaquetaria/efectos de los fármacos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA