Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Infect Dis ; 24(1): 379, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584271

RESUMEN

BACKGROUND: A major worldwide health issue is the rising frequency of resistance of bacteria.Drug combinations are a winning strategy in fighting resistant bacteria and might help in protecting the existing drugs.Monolaurin is natural compound extracted from coconut oil and has a promising antimicrobial activity against Staphylococcus.aureus. This study aims to examine the efficacy of monolaurin both individually and in combination with ß-lactam antibiotics against Staphylococcus aureus isolates. METHODS: Agar dilution method was used for determination of minimum inhibitory concentration (MIC) of monolaurin against S.aureus isolates. Scanning electron microscope (SEM) was used to detect morphological changes in S.aureus after treatment with monolaurin. Conventional and Real-time Polymerase chain reaction (RT-PCR) were performed to detect of beta-lactamase (blaZ) gene and its expressional levels after monolaurin treatment. Combination therapy of monolaurin and antibiotics was assessed through fractional inhibitory concentration and time-kill method. RESULTS: The antibacterial activity of monolaurin was assessed on 115 S.aureus isolates, the MIC of monolaurin were 250 to 2000 µg/ml. SEM showed cell elongation and swelling in the outer membrane of S.aureus in the prescence of 1xMIC of monolaurin. blaZ gene was found in 73.9% of S.aureus isolates. RT-PCR shows a significant decrease in of blaZ gene expression at 250 and 500 µg/ml of monolaurin. Synergistic effects were detected through FIC method and time killing curve. Combination therapy established a significant reduction on the MIC value. The collective findings from the antibiotic combinations with monolaurin indicated synergism rates ranging from 83.3% to 100%.In time-kill studies, combination of monolaurin and ß-lactam antibiotics produced a synergistic effect. CONCLUSION: This study showed that monolaurin may be a natural antibacterial agent against S. aureus, and may be an outstanding modulator of ß-lactam drugs. The concurrent application of monolaurin and ß-lactam antibiotics, exhibiting synergistic effects against S. aureus in vitro, holds promise as potential candidates for the development of combination therapies that target particularly, patients with bacterial infections that are nearly incurable.


Asunto(s)
Lauratos , Staphylococcus aureus Resistente a Meticilina , Monoglicéridos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Antibióticos Betalactámicos , Glicerol/farmacología , Sinergismo Farmacológico , Antibacterianos/farmacología , Monobactamas/farmacología , Pruebas de Sensibilidad Microbiana
2.
Cell Biochem Funct ; 42(4): e4072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031589

RESUMEN

Lung cancer holds the position of being the primary cause of cancer-related fatalities on a global scale. Furthermore, it exhibits the highest mortality rate among all types of cancer. The survival rate within a span of 5 years is less than 20%, primarily due to the fact that the disease is often diagnosed at an advanced stage, resulting in less effective treatment options compared to earlier stages. There are two main types of primary lung cancer: nonsmall-cell lung cancer, which accounts for approximately 80%-85% of all cases, and small-cell lung cancer, which is categorized based on the specific type of cells in which the cancer originates. The understanding of the biology of this disease and the identification of oncogenic driver alterations have significantly transformed the landscape of therapeutic approaches. Long noncoding RNAs (lncRNAs) play a crucial role in regulating various physiological and pathological processes through diverse molecular mechanisms. Among these lncRNAs, lncRNA H19, initially identified as an oncofetal transcript, has garnered significant attention due to its elevated expression in numerous tumors. Extensive research has confirmed its involvement in tumorigenesis and malignant progression by promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and therapy resistance. This comprehensive review aims to provide an overview of the aberrant overexpression of lncRNA H19 and the molecular pathways through which it contributes to the advancement of lung cancer. The findings of this review highlight the potential for further investigation into the diagnosis and treatment of this disease, offering promising avenues for future research.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Transición Epitelial-Mesenquimal , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Regulación Neoplásica de la Expresión Génica
3.
Bioprocess Biosyst Eng ; 47(8): 1321-1334, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38647679

RESUMEN

Ultrasonic manufacturing has emerged as a promising eco-friendly approach to synthesize lipid-based nanocarriers for targeted drug delivery. This study presents the novel ultrasonic preparation of lipid nanocarriers loaded with Scutellaria barbata extract, repurposed for anticancer and antibacterial use. High-frequency ultrasonic waves enabled the precise self-assembly of DSPE-PEG, Span 40, and cholesterol to form nanocarriers encapsulating the therapeutic extract without the use of toxic solvents, exemplifying green nanotechnology. Leveraging the inherent anticancer and antibacterial properties of Scutellaria barbata, the study demonstrates that lipid encapsulation enhances the bioavailability and controlled release of the extract, which is vital for its therapeutic efficacy. Dynamic light scattering and transmission electron microscopy analyses confirmed the increase in size and successful encapsulation post-loading, along with an augmented negative zeta potential indicating enhanced stability. A high encapsulation efficiency of 91.93% was achieved, and in vitro assays revealed the loaded nanocarriers' optimized release kinetics and improved antimicrobial potency against Pseudomonas aeruginosa, compared to the free extract. The combination of ultrasonic synthesis and Scutellaria barbata in an eco-friendly manufacturing process not only advances green nanotechnology but also contributes to sustainable practices in pharmaceutical manufacturing. The data suggest that this innovative nanocarrier system could provide a robust platform for the development of nanotechnology-based therapeutics, enhancing drug delivery efficacy while aligning with environmental sustainability.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Scutellaria , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Scutellaria/química , Antineoplásicos/química , Antineoplásicos/farmacología , Portadores de Fármacos/química , Lípidos/química , Pseudomonas aeruginosa/efectos de los fármacos , Nanopartículas/química , Ondas Ultrasónicas , Humanos , Tecnología Química Verde , Ultrasonido
4.
East Mediterr Health J ; 30(1): 46-52, 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38415335

RESUMEN

Background: In Pakistan, where the burden of communicable diseases remains high, the private sector accounts for 62% of health care provision. Aim: To describe the role of the private sector in communicable disease management in Pakistan and inform a more effective engagement towards achieving Universal Health Coverage. Methods: We searched the literature and available documents on policies, regulations and experiences in private health sector engagement in Pakistan. We interviewed policy level experts regarding the formulation of national health policies and plans and a sample of private providers using a structured questionnaire to assess their awareness of and engagement in communicable disease programmes. Results: Published reports described initiatives to engage the private sector in improving coverage for a package of care and programme-specific initiatives. Pakistan did not have a national policy for structural engagement, and regulations were limited. Policy level experts interviewed perceived the private sector as market-driven and poorly regulated. Thirty-nine percent of private sector providers interviewed were aware or had been trained in procedures or guidelines, and 23% of them had had their performance monitored by government. Conclusion: We recommend that the Ministry of Health provide overall vision for the operations of the public and private health sectors so that both sectors can complement each other towards the achievement of Universal Health Coverage, including for communicable diseases.


Asunto(s)
Enfermedades Transmisibles , Sector Privado , Humanos , Pakistán , Inmunización , Vacunación , Enfermedades Transmisibles/epidemiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38700796

RESUMEN

The utilization of medicinal plant extracts in therapeutics has been hindered by various challenges, including poor bioavailability and stability issues. Nanovesicular delivery systems have emerged as promising tools to overcome these limitations by enhancing the solubility, bioavailability, and targeted delivery of bioactive compounds from medicinal plants. This review explores the applications of nanovesicular delivery systems in antibacterial and anticancer therapeutics using medicinal plant extracts. We provide an overview of the bioactive compounds present in medicinal plants and their therapeutic properties, emphasizing the challenges associated with their utilization. Various types of nanovesicular delivery systems, including liposomes, niosomes, ethosomes, and solid lipid nanoparticles, among others, are discussed in detail, along with their potential applications in combating bacterial infections and cancer. The review highlights specific examples of antibacterial and anticancer activities demonstrated by these delivery systems against a range of pathogens and cancer types. Furthermore, we address the challenges and limitations associated with the scale-up, stability, toxicity, and regulatory considerations of nanovesicular delivery systems. Finally, future perspectives are outlined, focusing on emerging technologies, integration with personalized medicine, and potential collaborations to drive forward research in this field. Overall, this review underscores the potential of nanovesicular delivery systems for enhancing the therapeutic efficacy of medicinal plant extracts in antibacterial and anticancer applications, while identifying avenues for further research and development.

6.
Clin Transl Oncol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922537

RESUMEN

Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.

7.
Cell Biochem Biophys ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822204

RESUMEN

The most prevalent inflammatory arthritis and a leading contributor to disability is rheumatoid arthritis (RA). Although it may not have arrived in Europe until the 17th century, it was present in early Native American communities several thousand years ago. Exosomes released by mesenchymal stem cells (MSCs) are highly immunomodulatory due to the origin of the cell. As a cell-free therapy, MSCs-exosomes are less toxic and elicit a weakened immune response than cell-based therapies. Exosomal noncoding RNAs (ncRNAs) are closely associated with a number of biological and functional facets of human health, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Various exo-miRNAs and lncRNAs such as HAND2-AS1, miR-150-5p, miRNA-124a, and miR-320a lodged with MSC could be appropriate therapeutic ways for RA treatment. These MSC-derived exosomes affect RA disorders via different molecular pathways such as NFK-ß, MAPK, and Wnt. The purpose of this review is to review the research that has been conducted since 2020 so far in the field of RA disease treatment with MSC-loaded exo-miRNAs and exo-lncRNAs.

8.
Heliyon ; 10(14): e34619, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149004

RESUMEN

Heavy metals can cause serious environmental and human health problems, and their removal from wastewater is critical to protect our planet and communities. This study investigated the ability of crushed pomegranate peel to remove mercury and cadmium ions from contaminated water as a function of different experimental parameters. The experimental results showed that the pH of the solution influenced the adsorptive removal of heavy metals, with the best performance observed at pH 4.8. Optimization studies and process balance modeling were performed to optimize the process for commercial use. The performance of pomegranate peel was compared with that of other materials, and the highest adsorption capacities for both cadmium (Ca (II)) and mercury (Hg (II)) ions were observed to be 89.59 and 42.125 mg/g, respectively. The results were interpreted using the Langmuir model, which provided the best fit to describe the behavior of the process.

9.
Med Oncol ; 41(8): 201, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001987

RESUMEN

Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.


Asunto(s)
Neoplasias Pancreáticas , Fitoquímicos , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Microambiente Tumoral/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Nanopartículas
10.
East Mediterr Health J ; 29(12): 980-986, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279866

RESUMEN

Background: Many countries in the Eastern Mediterranean Region (EMR) have developed packages of services for achieving Universal Health Coverage (UHC), however, policymakers, especially in resource-constrained countries, still face challenges in delivering equitable, efficient and sustainable health services. Aims: To provide guidance for EMR countries and develop packages of services for UHC. Methods: We used information gathered from narrative reviews, national experiences and expert consultations to develop step-by-step guidance for the development of national packages of services for the achievement of UHC by countries in the EMR. Results: The processes used to develop packages of services varied between EMR countries and these processes may not have involved all relevant stakeholders. We highlight in this paper the iterative processes, including several phases and steps, to be used by EMR countries for developing packages of services for UHC. These processes also make provision for continuous monitoring and revision to make necessary improvements as morbidity patterns evolve. Conclusion: Developing a package of services for the achievement of UHC is a significant milestone for EMR countries and it is central to shaping the healthcare system for effective delivery of services.


Asunto(s)
Atención a la Salud , Cobertura Universal del Seguro de Salud , Humanos , Servicios de Salud , Región Mediterránea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA