RESUMEN
We report laterally and vertically phase-separated thin film structures in conjugated polymer blends created by polymer molecular weight variation. We find that micrometer-scale lateral phase separation is critical in achieving high initial device efficiency of light-emitting diodes, whereas improved balance of charge carrier mobilities and film thickness uniformity are important in maintaining high efficiency at high voltages. The optoelectronic properties of these blend thin films and devices are strongly influenced by the polymer chain order/disorder and the interface state formed at polymer/polymer heterojunctions.
RESUMEN
Ambipolar, solution-processed thin-film transistors based on a discotic dye turn into unipolar behavior after thermal annealing. No evidence for temperature-induced change in injection barrier or interface trapping can be found to explain this phenomenon. Instead, a variation in morphology is considered as the cause for the observed transition from ambipolar to unipolar charge transport.
RESUMEN
Structural and electronic properties of pristine and lithium-intercalated, phenyl-capped aniline dimers as a model for the lithium-polyaniline system have been studied by photoelectron spectroscopy and quantum chemical calculations. It was found that the electronic structure of reduced and oxidized forms of oligoanilines is only weakly affected by isomerism. Upon intercalation, charge transfer from the Li-atoms is remarkable and highly localized at N-atomic sites, where configurations are energetically favored in which both N atoms of the dimers are bound to Li atoms. Conversion of nitrogen sites is different for the two forms of aniline dimers and incomplete up to high intercalation levels, indicating a pronounced role of solid-state effects in the formation of such compounds.
RESUMEN
The vibrational coupling in the ground and excited states of positively charged naphthalene, anthracene, tetracene, and pentacene molecules is studied on the basis of a joint experimental and theoretical study of ionization spectra using high-resolution gas-phase photoelectron spectroscopy and first-principles correlated quantum-mechanical calculations. Our theoretical and experimental results reveal that, while the main contribution to relaxation energy in the ground state of oligoacene systems comes from high-energy vibrations, the excited-state relaxation energies show a significant redistribution toward lower-frequency vibrations. A direct correlation is found between the nature of the vibronic interaction and the pattern of the electronic state structure.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos/química , Antracenos/química , Electrones , Naftacenos/química , Naftalenos/química , Análisis Espectral , VibraciónRESUMEN
Thin films of aligned supramolecular architectures built from newly synthesized thiophene-substituted porphyrins have been processed from solution on surfaces.
RESUMEN
The hole-vibrational coupling in naphthalene is studied using high-resolution gas-phase photoelectron spectroscopy and density functional theory calculations (DFT), and a remarkable increase of the coupling with low-frequency vibrations is observed in the excited states.
Asunto(s)
Electroquímica/métodos , Indoles/química , Nanopartículas del Metal/química , Nanotecnología/instrumentación , Nanotecnología/métodos , Nanotubos de Carbono/química , Nitrógeno/química , Electrones , Isoindoles , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectrofotometría , Temperatura , Difracción de Rayos XRESUMEN
The role of nitrogen in the charge transfer and storage capacity of lithium-intercalated heterocyclic oligophenylenes was investigated using photoelectron spectroscopy. The development of new occupied states at low binding energies in the valence band region, as well as core level chemical shifts at both carbon and nitrogen sites, demonstrates partial charge transfer from lithium atoms to the organic component during formation of the intercalated compound. In small compounds, i.e., biphenyl and bipyridine derivatives, the position of the nitrogen heteroatom significantly affects the spacing between gap states in the Li-intercalated film; yet it has minimal effects on the charge storage capacity. In larger, branched systems, the presence of nitrogen in the aromatic system significantly enhances the charge storage capacity while the Li-N bond strength at high intercalation levels is significantly weakened relative to the nitrogen-free derivative. These observations have strong implications towards improved deintercalation processes in organic electrodes in lithium-ion batteries.
Asunto(s)
Litio/química , Piridinas/química , Compuestos de Bifenilo/química , Análisis EspectralRESUMEN
This paper deals with the influence of the nature and number of solid interfaces on the alignment of the columns in a semiconducting discotic liquid crystal. The solid substrates have been characterized in terms of their roughness and surface energy. The alignment of the discotic liquid crystal columns on these substrates has been determined by optical microscopy under crossed polarizers and by tapping-mode atomic force microscopy. The nature of the substrates has negligible influence on the alignment. The key parameter is the confinement imposed to the film. These surprising observations are explained by the antagonist alignment role of gas and solid interfaces.
RESUMEN
In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a pi-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically. It appears that the interface dipole formed at an organic/metal interface can be divided into two contributions: (i) the first corresponds to the "chemical" dipole induced by a partial charge transfer between the organic layers and the metal upon chemisorption of the organic molecules on the metal surface, and (ii) the second relates to the change in metal surface dipole because of the modification of the metal electron density tail that is induced by the presence of the adsorbed organic molecules. Our analysis shows that the charge injection barrier in devices can be tuned by modulating various parameters: the chemical potential of the bare metal (given by its work function), the metal surface dipole, and the ionization potential and electron affinity of the organic layer.
RESUMEN
Discotic liquid crystals emerge as very attractive materials for organic-based (opto)electronics as they allow efficient charge and energy transport along self-organized molecular columns. Here, angle-resolved photoelectron spectroscopy (ARUPS) is used to investigate the electronic structure and supramolecular organization of the discotic molecule, hexakis(hexylthio)diquinoxalino[2,3-a:2',3'-c]phenazine, deposited on graphite. The ARUPS data reveal significant changes in the electronic properties when going from disordered to columnar phases, the main feature being a decrease in ionization potential by 1.8 eV following the appearance of new electronic states at low binding energy. This evolution is rationalized by quantum-chemical calculations performed on model stacks containing from two to six molecules, which illustrate the formation of a quasi-band structure with Bloch-like orbitals delocalized over several molecules in the column. The ARUPS data also point to an energy dispersion of the upper pi-bands in the columns by some 1.1 eV, therefore highlighting the strongly delocalized nature of the pi-electrons along the discotic stacks.