Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Chemistry ; 30(15): e202304050, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38197477

RESUMEN

A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2 ], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77 Se NMR), and LC-MS. Diphenyl diselenide (Ph-Se)2 and selenocystine, (Sec)2 , were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se-Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C-Se coupling reaction, a combination that makes the reaction biocompatible. The C-Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se-Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C-Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).


Asunto(s)
Cistina/análogos & derivados , Compuestos de Organoselenio , Selenio , Animales , Bovinos , Oro/química , Péptidos , Glutatión Peroxidasa/metabolismo , Selenocisteína/química
2.
Chemphyschem ; 24(15): e202300091, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191047

RESUMEN

The unconventional bioorthogonal catalytic activation of anticancer metal complexes by flavin and flavoproteins photocatalysis has been reported recently. The reactivity is based on a two-electron redox reaction of the photoactivated flavin. Furthermore, when it comes to flavoproteins, we recently reported that site mutagenesis can modulate and improve this catalytic activity in the mini Singlet Oxygen Generator protein (SOG). In this paper, we analyze the reductive half-reaction in different miniSOG environments by means of density functional theory. We report that the redox properties of flavin and the resulting reactivity of miniSOG is modulated by specific mutations, which is in line with the experimental results in the literature. This modulation can be attributed to the fundamental physicochemical properties of the system, specifically (i) the competition of single and double reduction of the flavin and (ii) the probability of electron transfer from the protein to the flavin. These factors are ultimately linked to the stability of flavin's electron-accepting orbitals in different coordination modes.

3.
Inorg Chem ; 62(14): 5644-5651, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36990656

RESUMEN

In situ activation of Pt(IV) to Pt(II) species is a promising strategy to control the anticancer activity and overcome the off-target toxicity linked to classic platinum chemotherapeutic agents. Herein, we present the design and synthesis of two new asymmetric Pt(IV) derivatives of cisplatin and oxaliplatin (1·TARF and 2·TARF, respectively) bearing a covalently bonded 2',3',4',5'-tetraacetylriboflavin moiety (TARF). 1H and 195Pt NMR spectroscopy shows that 1·TARF and 2·TARF can be effectively activated into toxic Pt(II) species, when incubated with nicotinamide adenine dinucleotide, sodium ascorbate, and glutathione in the dark and under light irradiation. Density functional theory studies of the dark Pt(IV)-to-Pt(II) conversion of 2·TARF indicate that the process involves first hydride transfer from the donor to the flavin moiety of the complex, followed by electron transfer to the Pt(IV) center. When administered to MDA-MB-231 breast cancer cells preincubated with nontoxic amounts of ascorbate, 2·TARF displays enhanced toxicity (between 1 and 2 orders of magnitude), suggesting that the generation of oxaliplatin can selectively be triggered by redox activation. Such an effect is not observed when 2 and TARF are coadministered under the same conditions, demonstrating that covalent binding of the flavin to the Pt complex is pivotal.


Asunto(s)
Antineoplásicos , Profármacos , Oxaliplatino/farmacología , Antineoplásicos/química , Cisplatino/química , Platino (Metal)/química , Espectroscopía de Resonancia Magnética , Profármacos/química , Línea Celular Tumoral
4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674620

RESUMEN

Photoactivatable Pt(IV) prodrugs represent nowadays an intriguing class of potential metal-based drugs, endowed with more chemical inertness in their oxidized form and better selectivity for the target with respect to the clinically established Pt(II) compounds. In fact, they have the possibility to be reduced by light irradiation directly at the site of interest. For this reason, we synthesized a new Pt(IV) complex, [Pt(OCOCH3)3(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (1), that is well soluble in aqueous medium and totally unreactive towards selected model biomolecules until its reduction. The highlight of this work is the rapid and efficient photoreduction of 1 with visible light (460 nm), which leads to its reactive Pt(II) analogue. This behavior was made possible by taking advantage of an efficient catalytic system based on flavin and NADH, which is naturally present in the cellular environment. As a comparison, the reduction of 1 was also studied with simple UV irradiation, but both UV-Vis spectrophotometry and 1H-NMR spectrometry showed that the flavin-catalyzed reduction with visible light was faster. Lastly, the reactivity against two representative biological targets, i.e., human serum albumin and one monofilament oligonucleotide fragment, was evaluated by high-resolution mass spectrometry. The results clearly pointed out that the prodrug 1 did not interact with these targets until its photoreduction to the Pt(II) analogue.


Asunto(s)
Antineoplásicos , Profármacos , Humanos , Antineoplásicos/química , Compuestos Organoplatinos/química , Luz , Espectroscopía de Resonancia Magnética , Profármacos/química
5.
Angew Chem Int Ed Engl ; 62(13): e202218312, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36718873

RESUMEN

In vitro biosynthetic pathways that condense and reduce molecules through coenzyme A (CoASH) activation demand energy and redox power in the form of ATP and NAD(P)H, respectively. These coenzymes must be orthogonally recycled by ancillary reactions that consume chemicals, electricity, or light, impacting the atom economy and/or the energy consumption of the biosystem. In this work, we have exploited vinyl esters as dual acyl and electron donor substrates to synthesize ß-hydroxy acids through a non-decarboxylating Claisen condensation, reduction and hydrolysis stepwise cascade, including a NADH recycling step, catalyzed by a total of 4 enzymes. Herein, the chemical energy to activate the acyl group with CoASH and the redox power for the reduction are embedded into the vinyl esters. Upon optimization, this self-sustaining cascade reached a titer of (S)-3-hydroxy butyrate of 24 mM without requiring ATP and simultaneously recycling CoASH and NADH. This work illustrates the potential of in vitro biocatalysis to transform simple molecules into multi-functional ones.


Asunto(s)
Hidroxiácidos , NAD , NAD/metabolismo , Ésteres , Coenzima A/metabolismo , Adenosina Trifosfato/metabolismo
6.
Phys Chem Chem Phys ; 24(9): 5323-5329, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188500

RESUMEN

The mechanism for the photocatalytic activation of Pt(IV) anticancer prodrugs by riboflavin in the presence of NADH has been investigated by DFT. In the first step of the reaction, the oxidation kinetics of NADH to afford the catalytically active riboflavin hydroquinone is dramatically favoured by generation of the flavin triplet excited state. In the triplet, formation of a π-π stacked adduct promotes the hydride transfer from NADH to riboflavin with an almost barrierless pathway (2.7 kcal mol-1). In the singlet channel, conversely, the process is endergonic and requires overcoming a higher activation energy (19.2 kcal mol-1). In the second half of the reaction, the reduction of the studied Pt(IV) complexes by riboflavin hydroquinone occurs via an inner sphere mechanism, displaying free energy barriers smaller than 10 kcal mol-1. Pt reduction by bioreductants such as NADH and ascorbate involve instead less stabilized transition states (22.2-38.3 kcal mol-1), suggesting that riboflavin hydroquinone is an efficient reducing agent for Pt(IV) derivatives in biological settings.


Asunto(s)
Ácido Ascórbico , Riboflavina , Catálisis , Cinética , Oxidación-Reducción
7.
Inorg Chem ; 60(23): 17450-17461, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34503331

RESUMEN

Half-sandwich Os-arene complexes exhibit promising anticancer activity, but their photochemistry has hardly been explored. To exploit the photocytotoxicity and photochemistry of Os-arenes, O,O-chelated complexes [Os(η6-p-cymene)(Curc)Cl] (OsCUR-1, Curc = curcumin) and [Os(η6-biphenyl)(Curc)Cl] (OsCUR-2), and N,N-chelated complexes [Os(η6-biphenyl)(dpq)I]PF6 (OsDPQ-2, dpq = pyrazino[2,3-f][1,10]phenanthroline) and [Os(η6-biphenyl)(bpy)I]PF6 (OsBPY-2, bpy = 2,2'-bipyridine), have been investigated. The Os-arene curcumin complexes showed remarkable photocytotoxicity toward a range of cancer cell lines (blue light IC50: 2.6-5.8 µM, photocytotoxicity index PI = 23-34), especially toward cisplatin-resistant cancer cells, but were nontoxic to normal cells. They localized mainly in mitochondria in the dark but translocated to the nucleus upon photoirradiation, generating DNA and mitochondrial damage, which might contribute toward overcoming cisplatin resistance. Mitochondrial damage, apoptosis, ROS generation, DNA damage, angiogenesis inhibition, and colony formation were observed when A549 lung cancer cells were treated with OsCUR-2. The photochemistry of these Os-arene complexes was investigated by a combination of NMR, HPLC-MS, high energy resolution fluorescence detected (HERFD), X-ray adsorption near edge structure (XANES) spectroscopy, total fluorescence yield (TFY) XANES spectra, and theoretical computation. Selective photodissociation of the arene ligand and oxidation of Os(II) to Os(III) occurred under blue light or UVA excitation. This new approach to the design of novel Os-arene complexes as phototherapeutic agents suggests that the novel curcumin complex OsCUR-2, in particular, is a potential candidate for further development as a photosensitizer for anticancer photoactivated chemotherapy (PACT).


Asunto(s)
Antineoplásicos/farmacología , Calixarenos/farmacología , Complejos de Coordinación/farmacología , Osmio/farmacología , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Calixarenos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Daño del ADN , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Osmio/química , Procesos Fotoquímicos
8.
Angew Chem Int Ed Engl ; 59(39): 17130-17136, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32633820

RESUMEN

AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.


Asunto(s)
Antineoplásicos/farmacología , Oro/farmacología , Compuestos Heterocíclicos/farmacología , Metano/análogos & derivados , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Oro/química , Compuestos Heterocíclicos/química , Humanos , Radioisótopos de Yodo , Ligandos , Metano/química , Metano/farmacología , Ratones , Estructura Molecular , Tomografía de Emisión de Positrones , Distribución Tisular , Células Tumorales Cultivadas
9.
Chemistry ; 25(27): 6651-6660, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30681213

RESUMEN

Catalysis has strongly emerged in the field of medicinal inorganic chemistry as a suitable tool to deliver new drug candidates and to overcome drawbacks associated to metallodrugs. In this Concept article, we discuss representative examples of how catalysis has been applied in combination with metal complexes to deliver new therapy approaches. In particular, we explain key achievements in the design of catalytic metallodrugs that damage biomolecular targets and in the development of metal catalysis schemes for the activation of exogenous organic prodrugs. Moreover, we discuss our recent discoveries on the flavin-mediated bioorthogonal catalytic activation of metal-based prodrugs; a new catalysis strategy in which metal complexes are unconventionally employed as substrates rather than catalysts.


Asunto(s)
Química Farmacéutica , Compuestos Inorgánicos/química , Antineoplásicos/química , Catálisis , Complejos de Coordinación/química , Humanos , Profármacos/química
10.
Molecules ; 24(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366154

RESUMEN

The immobilization of fluorescent proteins is a key technology enabling to fabricate a new generation of photoactive materials with potential technological applications. Herein we have exploited superfolder green (sGFP) and red (RFP) fluorescent proteins expressed with different polypeptide tags. We fused these fluorescent proteins to His-tags to immobilize them on graphene 3D hydrogels, and Cys-tags to immobilize them on porous microparticles activated with either epoxy or disulfide groups and with Lys-tags to immobilize them on upconverting nanoparticles functionalized with carboxylic groups. Genetically programming sGFP and RFP with Cys-tag and His-tag, respectively, allowed tuning the protein spatial organization either across the porous structure of two microbeads with different functional groups (agarose-based materials activated with metal chelates and epoxy-methacrylate materials) or across the surface of a single microbead functionalized with both metal-chelates and disulfide groups. By using different polypeptide tags, we can control the attachment chemistry but also the localization of the fluorescent proteins across the material surfaces. The resulting photoactive material formed by His-RFP immobilized on graphene hydrogels has been tested as pH indicator to measure pH changes in the alkaline region, although the immobilized fluorescent protein exhibited a narrower dynamic range to measure pH than the soluble fluorescent protein. Likewise, the immobilization of Lys-sGFP on alginate-coated upconverting nanoparticles enabled the infrared excitation of the fluorescent protein to be used as a green light emitter. These novel photoactive biomaterials open new avenues for innovative technological developments towards the fabrication of biosensors and photonic devices.


Asunto(s)
Grafito/química , Proteínas Fluorescentes Verdes/química , Hidrogeles/química , Proteínas Inmovilizadas/química , Proteínas Luminiscentes/química , Proteínas Recombinantes de Fusión/química , Alginatos/química , Técnicas Biosensibles , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/metabolismo , Luz , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metacrilatos/química , Nanopartículas/química , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Procesos Fotoquímicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sefarosa/química , Proteína Fluorescente Roja
11.
Angew Chem Int Ed Engl ; 57(12): 3143-3147, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29359850

RESUMEN

Recent advances in bioorthogonal catalysis promise to deliver new chemical tools for performing chemoselective transformations in complex biological environments. Herein, we report how FAD (flavin adenine dinucleotide), FMN (flavin mononucleotide), and four flavoproteins act as unconventional photocatalysts capable of converting PtIV and RuII complexes into potentially toxic PtII or RuII -OH2 species. In the presence of electron donors and low doses of visible light, the flavoproteins mini singlet oxygen generator (miniSOG) and NADH oxidase (NOX) catalytically activate PtIV prodrugs with bioorthogonal selectivity. In the presence of NADH, NOX catalyzes PtIV activation in the dark as well, indicating for the first time that flavoenzymes may contribute to initiating the activity of PtIV chemotherapeutic agents.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Flavina-Adenina Dinucleótido/química , Flavoproteínas/química , Platino (Metal)/química , Rutenio/química , Catálisis , Mononucleótido de Flavina/química , Luz , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos
12.
Chemistry ; 22(8): 2801-11, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26785101

RESUMEN

The synthesis and full characterisation (including X-ray diffraction studies and DFT calculations) of two new piano-stool Ru(II) -arene complexes, namely [(η(6) -p-cym)Ru(bpy)(m-CCH-Py)][(PF)6]2 (1) and [(η(6) -p-cym)Ru(bpm)(m-CCH-Py)][(PF)6]2 (2; p-cym=p-cymene, bpy=2,2'-bipyridine, bpm=2,2'-bipyrimidine, and m-CCH-Py=3-ethynylpyridine), is described and discussed. The reaction of the m-CCH-Py ligand of 1 and 2 with diethyl-3-azidopropyl phosphonate by Cu-catalysed click chemistry affords [(η(6) -p-cym)Ru(bpy)(P-Trz-Py)][(PF)6]2 (3) and [(η(6) -p-cym)Ru(bpm)(P-Trz-Py)][(PF)6]2 (4; P-Trz-Py=[3-(1-pyridin-3-yl-[1,2,3]triazol-4-yl)-propyl]phosphonic acid diethyl ester). Upon light excitation at λ=395 nm, complexes 1-4 photodissociate the monodentate pyridyl ligand and form the aqua adduct ions [(η(6) -p-cym)Ru(bpy)(H2O)](2+) and [(η(6) -p-cym)Ru(bpm)(H2O)](2+). Thulium -doped upconverting nanoparticles (UCNPs) are functionalised with 4, thus exploiting their surface affinity for the phosphonate group in the complex. The so-obtained nanosystem UCNP@4 undergoes near-infrared (NIR) photoactivation at λ=980 nm, thus producing the corresponding reactive aqua species that binds the DNA-model base guanosine 5'-monophosphate.

13.
Angew Chem Int Ed Engl ; 55(31): 8909-12, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27240103

RESUMEN

Dinuclear trihydroxido-bridged osmium-arene complexes are inert and biologically inactive, but we show here that linking dihydroxido-bridged Os(II) -arene fragments by a bridging di-imine to form a metallacycle framework results in strong antiproliferative activity towards cancer cells and distinctive knotting of DNA. The shortened spacer length reduces biological activity and stability in solution towards decomposition to biologically inactive dimers. Significant differences in behavior toward plasmid DNA condensation are correlated with biological activity.


Asunto(s)
Antineoplásicos/farmacología , ADN de Neoplasias/efectos de los fármacos , Estructuras Metalorgánicas/farmacología , Osmio/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructuras Metalorgánicas/química , Modelos Moleculares , Estructura Molecular , Osmio/química , Relación Estructura-Actividad
14.
Molecules ; 20(4): 7276-91, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25905605

RESUMEN

New Ru(II) arene complexes of formula [(η6-p-cym)Ru(N-N)(X)]2+ (where p-cym = para-cymene, N-N = 2,2'-bipyrimidine (bpm) or 2,2'-bipyridine (bpy) and X = m/p-COOMe-Py, 1-4) were synthesised and characterized, including the molecular structure of complexes [(η6-p-cym)Ru(bpy)(m-COOMe-Py)]2+ (3) and [(η6-p-cym)Ru(bpy) (p-COOMe-Py)]2+ (4) by single-crystal X-ray diffraction. Complexes 1-4 are stable in the dark in aqueous solution over 48 h and photolysis studies indicate that they can photodissociate the monodentate m/p-COOMe-Py ligands selectively with yields lower than 1%. DFT and TD-DFT calculations (B3LYP/LanL2DZ/6-31G**) performed on singlet and triplet states pinpoint a low-energy triplet state as the reactive state responsible for the selective dissociation of the monodentate pyridyl ligands.


Asunto(s)
Ésteres/síntesis química , Compuestos Organometálicos/química , Piridinas/síntesis química , Rutenio/química , Cristalografía por Rayos X , Ésteres/química , Modelos Moleculares , Estructura Molecular , Fotólisis , Piridinas/química
15.
Chemistry ; 20(44): 14421-36, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25213439

RESUMEN

Six substitutionally inert [Ru(II) (bipy)2 dppz](2+) derivatives (bipy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) bearing different functional groups on the dppz ligand [NH2 (1), OMe (2), OAc (3), OH (4), CH2 OH (5), CH2 Cl (6)] were synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). As also confirmed by DFT calculations, all complexes showed promising (1) O2 production quantum yields, well comparable with PSs available on the market. They can also efficiently intercalate into the DNA double helix, which is of high interest in view of DNA targeting. The cellular localization and uptake quantification of 1-6 were assessed by confocal microscopy and high-resolution continuum source atomic absorption spectrometry. Compound 1, and especially 2, showed very good uptake in cervical cancer cells (HeLa) with preferential nuclear accumulation. None of the compounds studied was found to be cytotoxic in the dark on both HeLa cells and, interestingly, on noncancerous MRC-5 cells (IC50 >100 µM). However, 1 and 2 showed very promising behavior with an increment of about 150 and 42 times, respectively, in their cytotoxicities upon light illumination at 420 nm in addition to a very good human plasma stability. As anticipated, the preferential nuclear accumulation of 1 and 2 and their very high DNA binding affinity resulted in very efficient DNA photocleavage, suggesting a DNA-based mode of phototoxic action.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Rutenio/química , 2,2'-Dipiridil/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , ADN/efectos de los fármacos , Células HeLa , Humanos , Sustancias Intercalantes/síntesis química , Procesos Fotoquímicos , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química
16.
Chemistry ; 19(45): 15199-209, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24114923

RESUMEN

Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Organometálicos/química , Osmio/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Ligandos , Osmio/química , Difracción de Rayos X
17.
Chemistry ; 19(29): 9578-91, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23733242

RESUMEN

Platinum diam(m)ine complexes, such as cisplatin, are successful anticancer drugs, but suffer from problems of resistance and side-effects. Photoactivatable Pt(IV) prodrugs offer the potential of targeted drug release and new mechanisms of action. We report the synthesis, X-ray crystallographic and spectroscopic properties of photoactivatable diazido complexes trans,trans,trans-[Pt(N3)2(OH)2(MA)(Py)] (1; MA=methylamine, Py=pyridine) and trans,trans,trans-[Pt(N3)2(OH)2(MA)(Tz)] (2; Tz=thiazole), and interpret their photophysical properties by TD-DFT modelling. The orientation of the azido groups is highly dependent on H bonding and crystal packing, as shown by polymorphs 1p and 1q. Complexes 1 and 2 are stable in the dark towards hydrolysis and glutathione reduction, but undergo rapid photoreduction with UVA or blue light with minimal amine photodissociation. They are over an order of magnitude more potent towards HaCaT keratinocytes, A2780 ovarian, and OE19 oesophageal carcinoma cells than cisplatin and show particular potency towards cisplatin-resistant human ovarian cancer cells (A2780cis). Analysis of binding to calf-thymus (CT), plasmids, oligonucleotide DNA and individual nucleotides reveals that photoactivated 1 and 2 form both mono- and bifunctional DNA lesions, with preference for G and C, similar to transplatin, but with significantly larger unwinding angles and a higher percentage of interstrand cross-links, with evidence for DNA strand cross-linking further supported by a comet assay. DNA lesions of 1 and 2 on a 50 bp duplex were not recognised by HMGB1 protein, in contrast to cisplatin-type lesions. The photo-induced platination reactions of DNA by 1 and 2 show similarities with the products of the dark reactions of the Pt(II) compounds trans-[PtCl2(MA)(Py)] (5) and trans-[PtCl2(MA)(Tz)] (6). Following photoactivation, complex 2 reacted most rapidly with CT DNA, followed by 1, whereas the dark reactions of 5 and 6 with DNA were comparatively slow. Complexes 1 and 2 can therefore give rapid potent photocytotoxicity and novel DNA lesions in cancer cells, with no activity in the absence of irradiation.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Azidas/química , Azidas/farmacología , Cisplatino/química , Aductos de ADN/química , ADN/química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Platino (Metal)/química , Profármacos/química , Piridinas/química , Química Farmacéutica , Cisplatino/farmacología , Cristalografía por Rayos X , Humanos , Luz
18.
Inorg Chem ; 52(19): 10835-45, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24063694

RESUMEN

The luminescent, mono-diimine ruthenium complexes [(H)Ru(CO)(PPh3)2(dcbpy)][PF6] (1) (dcbpy = 4,4'-dicarboxy-2,2'-bipyridyl) and [(H)Ru(CO)(dppene)(5-amino-1,10-phen)][PF6] (2) (dppene = bis(diphenylphosphino)ethylene; phen = phenanthroline) were conjugated with 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE) and with cholesterol in the case of complex 2. Using standard conjugation techniques, compound 1 gives the bis-lipid derivative [(H)Ru(CO)(PPh3)2(dcbpy-N-DPPE2)][PF6] (3), while 2 provides the monolipid conjugate [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(S)-N-DPPE)][PF6] (4) and the cholesterol derivative [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(O)Ocholesteryl)][PF6] (5). These compounds were characterized by spectroscopic methods, and their photophysical properties were measured in organic solvents. The luminescence of lipid conjugates 3 and 4 is quenched in organic solvents while compound 4 shows a weak, short-lived, blue-shifted emission in aqueous solution. The cholesterol conjugate 5 shows the long-lived, microsecond-time scale emission associated with triplet metal-to-ligand charge-transfer excited states. Incorporation of conjugate 3 in lipid bilayer vesicles restores the luminescence, but with blue shifts (~80 nm) accompanied by nanosecond-time scale lifetimes. In the vesicles conjugate 4 shows a short-lived and blue-shifted emission similar to that observed in solution but with increased intensity. Conjugation of the complex [(H)Ru(CO)(PhP2C2H4C(O)O-N-succinimidyl)2(bpy)][PF6] (6") (bpy = 2,2'-bipyridyl) with DPPE gives the phosphine-conjugated complex [(H)Ru(CO)(PhP2C2H4C(O)-N-DPPE)2(bpy)][PF6] (7). Complex 7 also exhibits a short-lived and blue-shifted emission in solution and in vesicles as observed for complexes 3 and 4. We have also conjugated the complex [Ru(bpy)2(5-amino-1,10-phen)][PF6]2 (8) with both cholesterol (9) and DPPE (10). Neither complex 9 nor the previously reported complex 10 exhibited the blue shifts observed for complexes 3 and 4 when incorporated into large unilamellar vesicles (LUVs). The anisotropies of the emissions of complexes 3, 4, and 7 were also measured in LUVs, and those of complex 5 were measured in both glycerol and LUVs. High fundamental anisotropies were observed for complexes 3, 4, and 7.


Asunto(s)
Complejos de Coordinación/síntesis química , Colorantes Fluorescentes/química , Luz , Membrana Dobles de Lípidos , Fosfolípidos , Rutenio/química , Complejos de Coordinación/química , Ligandos , Membrana Dobles de Lípidos/química , Modelos Biológicos , Estructura Molecular , Fosfolípidos/química
19.
Phys Chem Chem Phys ; 15(38): 16152-9, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23986116

RESUMEN

A comprehensive study of the bulk solid OsCl3 and the molecular ion [Os(bpy)2(CO)Cl](+) is presented illustrating the application of RIXS and HERFD XANES spectroscopies to the investigation of both bulk materials and molecular complexes. In order to analyze the experimental results, DFT simulations were performed taking into account spin-orbit interaction. Calculations for both compounds resulted in good agreement with the experimental RIXS and HERFD XANES data, shedding light on the details of their local atomic and electronic structure. In particular, the spatial distribution of molecular orbitals was obtained, which allowed the determination of the origin of the absorption peaks. It was shown that for materials containing heavy atoms, only the application of advanced RIXS and HERFD XANES spectroscopies makes it possible to extract the information on local atomic and electronic structure details from XANES data.

20.
Chem Commun (Camb) ; 59(32): 4754-4757, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36974961

RESUMEN

A multifunctional hybrid constructed for controlling the delivery and activation of Pt anticancer agents in vitro is described herein. We employed consensus tetratricopeptide repeat protein (CTPR) for the covalent co-anchoring of riboflavin (photocatalyst) and a Pt(IV) prodrug complex. The Pt-loaded flavoprotein induced a 40% reduction in PANC-1 cell viability as a result of the photocatalytic formation of cisplatin.


Asunto(s)
Antineoplásicos , Profármacos , Profármacos/farmacología , Flavoproteínas , Cisplatino , Antineoplásicos/farmacología , Riboflavina/farmacología , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA