Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JNCI Cancer Spectr ; 6(1)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35699495

RESUMEN

Medical image interpretation is central to detecting, diagnosing, and staging cancer and many other disorders. At a time when medical imaging is being transformed by digital technologies and artificial intelligence, understanding the basic perceptual and cognitive processes underlying medical image interpretation is vital for increasing diagnosticians' accuracy and performance, improving patient outcomes, and reducing diagnostician burnout. Medical image perception remains substantially understudied. In September 2019, the National Cancer Institute convened a multidisciplinary panel of radiologists and pathologists together with researchers working in medical image perception and adjacent fields of cognition and perception for the "Cognition and Medical Image Perception Think Tank." The Think Tank's key objectives were to identify critical unsolved problems related to visual perception in pathology and radiology from the perspective of diagnosticians, discuss how these clinically relevant questions could be addressed through cognitive and perception research, identify barriers and solutions for transdisciplinary collaborations, define ways to elevate the profile of cognition and perception research within the medical image community, determine the greatest needs to advance medical image perception, and outline future goals and strategies to evaluate progress. The Think Tank emphasized diagnosticians' perspectives as the crucial starting point for medical image perception research, with diagnosticians describing their interpretation process and identifying perceptual and cognitive problems that arise. This article reports the deliberations of the Think Tank participants to address these objectives and highlight opportunities to expand research on medical image perception.


Asunto(s)
Inteligencia Artificial , Radiología , Cognición , Diagnóstico por Imagen , Humanos , Radiología/métodos , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA