Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 4980, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478375

RESUMEN

High-entropy materials have attracted considerable interest due to the combination of useful properties and promising applications. Predicting their formation remains the major hindrance to the discovery of new systems. Here we propose a descriptor-entropy forming ability-for addressing synthesizability from first principles. The formalism, based on the energy distribution spectrum of randomized calculations, captures the accessibility of equally-sampled states near the ground state and quantifies configurational disorder capable of stabilizing high-entropy homogeneous phases. The methodology is applied to disordered refractory 5-metal carbides-promising candidates for high-hardness applications. The descriptor correctly predicts the ease with which compositions can be experimentally synthesized as rock-salt high-entropy homogeneous phases, validating the ansatz, and in some cases, going beyond intuition. Several of these materials exhibit hardness up to 50% higher than rule of mixtures estimations. The entropy descriptor method has the potential to accelerate the search for high-entropy systems by rationally combining first principles with experimental synthesis and characterization.

2.
ACS Appl Mater Interfaces ; 8(20): 12871-80, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27144457

RESUMEN

Pseudocapacitive properties of V2O5-based adsorbates supported on TiO2 nanoparticles, which form spontaneously as two-dimensional (2-D) nonautonomous surface phases (complexions) at thermodynamic equilibria, have been systematically measured. Surprisingly, surface amorphous films (SAFs), which form naturally at thermodynamic equilibria at 550-600 °C with self-regulating or "equilibrium" thicknesses on the order of 1 nm, exhibit superior electrochemical performance at moderate and high scan rates (20-500 mV/s) that are of prime importance for supercapacitor applications, as compared with submonolayer and monolayer adsorbates formed at lower equilibration temperatures. This study suggests a new direction to design and fabricate a novel class of supercapacitors and other functional devices via utilizing 2-D interfacial phases that can form spontaneously via facile, cost-effective, and highly scalable synthesis routes.

3.
J Vis Exp ; (66): e4104, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22895280

RESUMEN

Rechargeable lithium ion batteries have wide applications in electronics, where customers always demand more capacity and longer lifetime. Lithium ion batteries have also been considered to be used in electric and hybrid vehicles or even electrical grid stabilization systems. All these applications simulate a dramatic increase in the research and development of battery materials, including new materials, doping, nanostructuring, coatings or surface modifications and novel binders. Consequently, an increasing number of physicists, chemists and materials scientists have recently ventured into this area. Coin cells are widely used in research laboratories to test new battery materials; even for the research and development that target large-scale and high-power applications, small coin cells are often used to test the capacities and rate capabilities of new materials in the initial stage. In 2010, we started a National Science Foundation (NSF) sponsored research project to investigate the surface adsorption and disordering in battery materials (grant no. DMR-1006515). In the initial stage of this project, we have struggled to learn the techniques of assembling and testing coin cells, which cannot be achieved without numerous help of other researchers in other universities (through frequent calls, email exchanges and two site visits). Thus, we feel that it is beneficial to document, by both text and video, a protocol of assembling and testing a coin cell, which will help other new researchers in this field. This effort represents the "Broader Impact" activities of our NSF project, and it will also help to educate and inspire students. In this video article, we document a protocol to assemble a CR2032 coin cell with a LiCoO2 working electrode, a Li counter electrode, and (the mostly commonly used) polyvinylidene fluoride (PVDF) binder. To ensure new learners to readily repeat the protocol, we keep the protocol as specific and explicit as we can. However, it is important to note that in specific research and development work, many parameters adopted here can be varied. First, one can make coin cells of different sizes and test the working electrode against a counter electrode other than Li. Second, the amounts of C black and binder added into the working electrodes are often varied to suit the particular purpose of research; for example, large amounts of C black or even inert powder were added to the working electrode to test the "intrinsic" performance of cathode materials. Third, better binders (other than PVDF) have also developed and used. Finally, other types of electrolytes (instead of LiPF6) can also be used; in fact, certain high-voltage electrode materials will require the uses of special electrolytes.


Asunto(s)
Cobalto/química , Suministros de Energía Eléctrica , Óxidos/química , Cationes Monovalentes/química , Electrodos , Polivinilos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA