Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 132: 141-149, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31051192

RESUMEN

The plants resist/tolerate unfavorable conditions in their natural habitats by using different but aligned and integrated defense mechanisms. Such defense responses include not only morphological and physiological adaptations but also the genomic and transcriptomic reconfiguration. Microbial attack on plants activates multiple pro-survival pathways such as transcriptional reprogramming, hypersensitive response (HR), antioxidant defense system and metabolic remodeling. Up-regulation of these processes during biotic stress conditions directly relates with plant survival. Over the years, hundreds of plant transcription factors (TFs) belonging to diverse families have been identified. Zinc finger protein (ZFP) TFs have crucial role in phytohormone response, plant growth and development, stress tolerance, transcriptional regulation, RNA binding and protein-protein interactions. Recent research progress has revealed regulatory and biological functions of ZFPs in incrementing plant resistance to pathogens. Integration of transcriptional activity with metabolic modulations has miniaturized plant innate immunity. However, the precise roles of different zinc finger TFs in plant immunity to pathogens have not been thoroughly analyzed. This review consolidates the pivotal functioning of zinc finger TFs and proposes the integrative understanding as foundation for the plant growth and development including the stress responses.


Asunto(s)
Antiinfecciosos/farmacología , Inmunidad de la Planta , Factores de Transcripción/fisiología , Dedos de Zinc/fisiología , Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Inmunidad Innata , Filogenia , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas con Motivos de Reconocimiento de ARN , Estrés Fisiológico
2.
Funct Plant Biol ; 512024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38669462

RESUMEN

Soybean (Glycine max ) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like GmKR3 and GmVQ58 have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and Phytophthora root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.


Asunto(s)
Resistencia a la Enfermedad , Glycine max , Enfermedades de las Plantas , Glycine max/genética , Glycine max/microbiología , Glycine max/inmunología , Glycine max/virología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Agricultura , Genómica , Genes de Plantas , Genoma de Planta , Sitios de Carácter Cuantitativo
3.
Front Plant Sci ; 8: 530, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473834

RESUMEN

Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology.

4.
Front Plant Sci ; 8: 1388, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28855910

RESUMEN

Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA