Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 60(4): 2314-2324, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32175736

RESUMEN

Cryptic pockets are protein cavities that remain hidden in resolved apo structures and generally require the presence of a co-crystallized ligand to become visible. Finding new cryptic pockets is crucial for structure-based drug discovery to identify new ways of modulating protein activity and thus expand the druggable space. We present here a new method and associated web application leveraging mixed-solvent molecular dynamics (MD) simulations using benzene as a hydrophobic probe to detect cryptic pockets. Our all-atom MD-based workflow was systematically tested on 18 different systems and 5 additional kinases and represents the largest validation study of this kind. CrypticScout identifies benzene probe binding hotspots on a protein surface by mapping probe occupancy, residence time, and the benzene occupancy reweighed by the residence time. The method is presented to the scientific community in a web application available via www.playmolecule.org using a distributed computing infrastructure to perform the simulations.


Asunto(s)
Simulación de Dinámica Molecular , Solventes , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos
2.
Proc Natl Acad Sci U S A ; 114(8): 2066-2071, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28167788

RESUMEN

The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson's disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl d-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR-BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR-BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1-bound A2AR-BRIL prevented formation of the lattice observed with the ZM241385-bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson's disease.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/química , Sitio Alostérico , Enfermedad de Parkinson/tratamiento farmacológico , Receptor de Adenosina A2A/química , Antagonistas del Receptor de Adenosina A2/metabolismo , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Animales , Antiparkinsonianos/química , Antiparkinsonianos/metabolismo , Antiparkinsonianos/uso terapéutico , Cristalografía por Rayos X , Humanos , Ligandos , Estructura Terciaria de Proteína , Receptor de Adenosina A2A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Células Sf9 , Spodoptera , Triazinas/química , Triazinas/metabolismo , Triazoles/química , Triazoles/metabolismo , Tirosina/química , Tirosina/metabolismo
3.
Angew Chem Int Ed Engl ; 58(28): 9399-9403, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31095849

RESUMEN

The widely expressed G-protein coupled receptors (GPCRs) are versatile signal transducer proteins that are attractive drug targets but structurally challenging to study. GPCRs undergo a number of conformational rearrangements when transitioning from the inactive to the active state but have so far been believed to adopt a fairly conserved inactive conformation. Using 19 F NMR spectroscopy and advanced molecular dynamics simulations we describe a novel inactive state of the adenosine 2A receptor which is stabilised by the aminotriazole antagonist Cmpd-1. We demonstrate that the ligand stabilises a unique conformation of helix V and present data on the putative binding mode of the compound involving contacts to the transmembrane bundle as well as the extracellular loop 2.


Asunto(s)
Amitrol (Herbicida)/antagonistas & inhibidores , Compuestos de Bifenilo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular/normas , Receptor de Adenosina A2A/química , Humanos
4.
Epilepsia ; 59(9): e147-e151, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30144048

RESUMEN

Brivaracetam (BRV) and levetiracetam (LEV) are effective antiepileptic drugs that bind selectively to the synaptic vesicle 2A (SV2A) protein. BRV differs from LEV in preclinical studies in that it exhibits a more potent and complete seizure protection across animal models. We reported previously that an allosteric modulator of the SV2A protein had differential effects on BRV compared with LEV, suggesting that they act at different sites or with different conformations of the SV2A protein. If this is the case, then we hypothesized that mutations of specific amino acids in the SV2A protein may have differential effects on BRV and LEV binding by the modulator. Mutation of some amino acids identified previously in the binding site of racetams to the SV2A protein had marked effects on binding of both [3 H]BRV and [3 H]LEV (eg, W300F, F277A, G303A, F658A, Y462A, W666A, I663A, D670A, and V661A). However, 3 amino acids were identified (K694, I273, and S294) in which mutation lost the effect of the modulator on [3 H]LEV binding with no effect on the modulation of [3 H]BRV binding. These results confirm that BRV and LEV bind to the human synaptic vesicle 2A protein at closely related sites but interact with these sites in a different way.


Asunto(s)
Anticonvulsivantes/farmacología , Levetiracetam/farmacología , Glicoproteínas de Membrana/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Pirrolidinonas/farmacología , Anilidas/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Ensayo de Unión Radioligante , Transfección , Tritio/farmacocinética
5.
ChemMedChem ; 19(7): e202300548, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38381042

RESUMEN

Several novel chemical series were identified that modulate glucocerebrosidase (GCase). Compounds from these series are active on glucosylceramide, unlike other known GCase modulators. We obtained GCase crystal structures with two compounds that have distinct chemotypes. Positive allosteric modulators bind to a site on GCase and induce conformational changes, but also induce an equilibrium state between monomer and dimer.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Glucosilceramidasa/química , Glucosilceramidasa/metabolismo , Glucosilceramidas , Hidrólisis , Enfermedad de Gaucher/tratamiento farmacológico
6.
Nat Commun ; 15(1): 7029, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353917

RESUMEN

The melanocortin receptor 4 (MC4R) belongs to the melanocortin receptor family of G-protein coupled receptors and is a key switch in the leptin-melanocortin molecular axis that controls hunger and satiety. Brain-produced hormones such as α-melanocyte-stimulating hormone (agonist) and agouti-related peptide (inverse agonist) regulate the molecular communication of the MC4R axis but are promiscuous for melanocortin receptor subtypes and induce a wide array of biological effects. Here, we use a chimeric construct of conformation-selective, nanobody-based binding domain (a ConfoBody Cb80) and active state-stabilized MC4R-ß2AR hybrid for efficient de novo discovery of a sequence diverse panel of MC4R-specific, potent and full agonistic nanobodies. We solve the active state MC4R structure in complex with the full agonistic nanobody pN162 at 3.4 Å resolution. The structure shows a distinct interaction with pN162 binding deeply in the orthosteric pocket. MC4R peptide agonists, such as the marketed setmelanotide, lack receptor selectivity and show off-target effects. In contrast, the agonistic nanobody is highly specific and hence can be a more suitable agent for anti-obesity therapeutic intervention via MC4R.


Asunto(s)
Receptor de Melanocortina Tipo 4 , Anticuerpos de Dominio Único , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/química , Receptor de Melanocortina Tipo 4/genética , Humanos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/metabolismo , alfa-MSH/química , alfa-MSH/farmacología , alfa-MSH/metabolismo , Células HEK293 , Unión Proteica , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Animales
7.
Front Mol Biosci ; 9: 863099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677880

RESUMEN

The human genome encodes 850 G protein-coupled receptors (GPCRs), half of which are considered potential drug targets. GPCRs transduce extracellular stimuli into a plethora of vital physiological processes. Consequently, GPCRs are an attractive drug target class. This is underlined by the fact that approximately 40% of marketed drugs modulate GPCRs. Intriguingly 60% of non-olfactory GPCRs have no drugs or candidates in clinical development, highlighting the continued potential of GPCRs as drug targets. The discovery of small molecules targeting these GPCRs by conventional high throughput screening (HTS) campaigns is challenging. Although the definition of success varies per company, the success rate of HTS for GPCRs is low compared to other target families (Fujioka and Omori, 2012; Dragovich et al., 2022). Beyond this, GPCR structure determination can be difficult, which often precludes the application of structure-based drug design approaches to arising HTS hits. GPCR structural studies entail the resource-demanding purification of native receptors, which can be challenging as they are inherently unstable when extracted from the lipid matrix. Moreover, GPCRs are flexible molecules that adopt distinct conformations, some of which need to be stabilized if they are to be structurally resolved. The complexity of targeting distinct therapeutically relevant GPCR conformations during the early discovery stages contributes to the high attrition rates for GPCR drug discovery programs. Multiple strategies have been explored in an attempt to stabilize GPCRs in distinct conformations to better understand their pharmacology. This review will focus on the use of camelid-derived immunoglobulin single variable domains (VHHs) that stabilize disease-relevant pharmacological states (termed ConfoBodies by the authors) of GPCRs, as well as GPCR:signal transducer complexes, to accelerate drug discovery. These VHHs are powerful tools for supporting in vitro screening, deconvolution of complex GPCR pharmacology, and structural biology purposes. In order to demonstrate the potential impact of ConfoBodies on translational research, examples are presented of their role in active state screening campaigns and structure-informed rational design to identify de novo chemical space and, subsequently, how such matter can be elaborated into more potent and selective drug candidates with intended pharmacology.

8.
Nat Commun ; 12(1): 3305, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083522

RESUMEN

Dopamine D1 receptor (D1R) is an important drug target implicated in many psychiatric and neurological disorders. Selective agonism of D1R are sought to be the therapeutic strategy for these disorders. Most selective D1R agonists share a dopamine-like catechol moiety in their molecular structure, and their therapeutic potential is therefore limited by poor pharmacological properties in vivo. Recently, a class of non-catechol D1R selective agonists with a distinct scaffold and pharmacological properties were reported. Here, we report the crystal structure of D1R in complex with stimulatory G protein (Gs) and a non-catechol agonist Compound 1 at 3.8 Å resolution. The structure reveals the ligand bound to D1R in an extended conformation, spanning from the orthosteric site to extracellular loop 2 (ECL2). Structural analysis reveals that the unique features of D1R ligand binding pocket explains the remarkable selectivity of this scaffold for D1R over other aminergic receptors, and sheds light on the mechanism for D1R activation by the non-catechol agonist.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Técnicas In Vitro , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química
9.
Biochim Biophys Acta Biomembr ; 1862(3): 183152, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31843475

RESUMEN

Dopamine receptors (DRs) are class A G-Protein Coupled Receptors (GPCRs) prevalent in the central nervous system (CNS). These receptors mediate physiological functions ranging from voluntary movement and reward recognition to hormonal regulation and hypertension. Drugs targeting dopaminergic neurotransmission have been employed to treat several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, Huntington's disease, attention deficit hyperactivity disorder (ADHD), and Tourette's syndrome. In vivo, incorporation of GPCRs into lipid membranes is known to be key to their biological function and, by inference, maintenance of their tertiary structure. A further significant challenge in the structural and biochemical characterization of human DRs is their low levels of expression in mammalian cells. Thus, the purification and enrichment of DRs whilst retaining their structural integrity and function is highly desirable for biophysical studies. A promising new approach is the use of styrene-maleic acid (SMA) copolymer to solubilize GPCRs directly in their native environment, to produce polymer-assembled Lipodisqs (LQs). We have developed a novel methodology to yield detergent-free D1-containing Lipodisqs directly from HEK293f cells expressing wild-type human dopamine receptor 1 (D1). We demonstrate that D1 in the Lipodisq retains activity comparable to that in the native environment and report, for the first time, the affinity constant for the interaction of the peptide neurotransmitter neurotensin (NT) with D1, in the native state.


Asunto(s)
Membrana Dobles de Lípidos/química , Receptores de Dopamina D1/aislamiento & purificación , Receptores Dopaminérgicos/aislamiento & purificación , Línea Celular , Detergentes , Células HEK293 , Humanos , Maleatos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores Acoplados a Proteínas G/aislamiento & purificación , Estirenos/química
10.
Structure ; 15(2): 235-44, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17292841

RESUMEN

The nature of voltage sensing by voltage-activated ion channels is a key problem in membrane protein structural biology. The way in which the voltage-sensor (VS) domain interacts with its membrane environment remains unclear. In particular, the known structures of Kv channels do not readily explain how a positively charged S4 helix is able to stably span a lipid bilayer. Extended (2 x 50 ns) molecular dynamics simulations of the high-resolution structure of the isolated VS domain from the archaebacterial potassium channel KvAP, embedded in zwitterionic and in anionic lipid bilayers, have been used to explore VS/lipid interactions at atomic resolution. The simulations reveal penetration of water into the center of the VS and bilayer. Furthermore, there is significant local deformation of the lipid bilayer by interactions between lipid phosphate groups and arginine side chains of S4. As a consequence of this, the electrostatic field is "focused" across the center of the bilayer.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfolípidos/química , Canales de Potasio con Entrada de Voltaje/química , Estructura Terciaria de Proteína , Electricidad Estática , Agua/química
11.
Sci Rep ; 9(1): 14199, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578448

RESUMEN

G-protein coupled receptors (GPCRs) play a pivotal role in transmitting signals at the cellular level. Structural insights can be exploited to support GPCR structure-based drug discovery endeavours. Despite advances in GPCR crystallography, active state structures are scarce. Molecular dynamics (MD) simulations have been used to explore the conformational landscape of GPCRs. Efforts have been made to retrieve active state conformations starting from inactive structures, however to date this has not been possible without using an energy bias. Here, we reconstruct the activation pathways of the apo adenosine receptor (A2A), starting from an inactive conformation, by applying adaptive sampling MD combined with a goal-oriented scoring function. The reconstructed pathways reconcile well with experiments and help deepen our understanding of A2A regulatory mechanisms. Exploration of the apo conformational landscape of A2A reveals the existence of ligand-competent states, active intermediates and state-dependent cholesterol hotspots of relevance for drug discovery. To the best of our knowledge this is the first time an activation process has been elucidated for a GPCR starting from an inactive structure only, using a non-biased MD approach, opening avenues for the study of ligand binding to elusive yet pharmacologically relevant GPCR states.


Asunto(s)
Agonistas del Receptor de Adenosina A2/química , Colesterol/química , Conformación Proteica , Receptor de Adenosina A2A/ultraestructura , Colesterol/genética , Descubrimiento de Drogas , Humanos , Ligandos , Simulación de Dinámica Molecular , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
12.
CNS Neurosci Ther ; 25(4): 442-451, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30242974

RESUMEN

AIMS: Kv1.1 (KCNA1) channels contribute to the control of neuronal excitability and have been associated with epilepsy. Kv1.1 channels can associate with the cytoplasmic Kvß1 subunit resulting in rapid inactivating A-type currents. We hypothesized that removal of channel inactivation, by modulating Kv1.1/Kvß1 interaction with a small molecule, would lead to decreased neuronal excitability and anticonvulsant activity. METHODS: We applied high-throughput screening to identify ligands able to modulate the Kv1.1-T1 domain/Kvß1 protein complex. We then selected a compound that was characterized on recombinant Kv1.1/Kvß1 channels by electrophysiology and further evaluated on sustained neuronal firing and on in vitro epileptiform activity using a high K+ -low Ca2+ model in hippocampal slices. RESULTS: We identified a novel compound able to modulate the interaction of the Kv1.1/Kvß1 complex and that produced a functional inhibition of Kv1.1/Kvß1 channel inactivation. We demonstrated that this compound reduced the sustained repetitive firing in hippocampal neurons and was able to abolish the development of in vitro epileptiform activity. CONCLUSIONS: This study describes a rational drug discovery approach for the identification of novel ligands that inhibit Kv1.1 channel inactivation and provides pharmacological evidence that such a mechanism translates into physiological effects by reducing in vitro epileptiform activity.


Asunto(s)
Potenciales de Acción/fisiología , Descubrimiento de Drogas/métodos , Hipocampo/fisiología , Canal de Potasio Kv.1.1/fisiología , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Hipocampo/efectos de los fármacos , Humanos , Canal de Potasio Kv.1.1/agonistas , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Bloqueadores de los Canales de Potasio/farmacología , Estructura Secundaria de Proteína , Ratas , Xenopus laevis
13.
Biochemistry ; 47(28): 7414-22, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18558719

RESUMEN

Potassium (K (+)) channels can regulate ionic conduction through their pore by a mechanism, involving the selectivity filter, known as C-type inactivation. This process is rapid in the hERG K (+) channel and is fundamental to its physiological role. Although mutations within hERG are known to remove this process, a structural basis for the inactivation mechanism has yet to be characterized. Using MD simulations based on homology modeling, we observe that the carbonyl of the filter aromatic, Phe627, forming the S 0 K (+) binding site, swiftly rotates away from the conduction axis in the wild-type channel. In contrast, in well-characterized non-inactivating mutant channels, this conformational change occurs less frequently. In the non-inactivating channels, interactions with a water molecule located behind the selectivity filter are critical to the enhanced stability of the conducting state. We observe comparable conformational changes in the acid sensitive TASK-1 channel and propose a common mechanism in these channels for regulating efflux of K (+) ions through the selectivity filter.


Asunto(s)
Concentración de Iones de Hidrógeno , Canales de Potasio/química , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Simulación por Computador , Humanos , Membrana Dobles de Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilcolinas , Conformación Proteica
14.
Curr Biol ; 15(18): R771-4, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16169480

RESUMEN

The recently determined structure of a mammalian voltage-gated potassium channel has important implications for our understanding of voltage-sensing and gating mechanisms in channels. It is also the first crystal structure of an overexpressed eukaryotic membrane protein.


Asunto(s)
Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv.1.2/ultraestructura , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína
15.
Neuropharmacology ; 123: 322-331, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28533163

RESUMEN

De novo gain of function mutations in GRIN2B encoding the GluN2B subunit of the N-methyl-d-aspartate (NMDA) receptor have been linked with epileptic encephalopathies, including infantile spasms. We investigated the effects of radiprodil, a selective GluN2B negative allosteric modulator and other non-selective NMDA receptor inhibitors on glutamate currents mediated by NMDA receptors containing mutated GluN2B subunits. The experiments were performed in Xenopus oocytes co-injected with the following human mRNAs: GRIN1/GRIN2B, GRIN1/GRIN2B-R540H, GRIN1/GRIN2B-N615I and GRIN1/GRIN2B-V618G. Glutamate displayed slightly increased potency in the R540H variant, but not in N615I and V618G variants. However, the inhibition by Mg2+ was completely abolished in N615I and V618G variants. In fact, Mg2+ enhanced glutamate responses in those variants. The potency of radiprodil to block glutamate-evoked currents was not affected in any of the variants, while the effects by non-selective NMDA inhibitors were greatly reduced in some of the variants. Additionally, in the Mg2+ insensitive variants, radiprodil blocked glutamate-activated currents with the same potency as in the absence of Mg2+. The gain of function observed in the reported GRIN2B variants could be a key pathophysiological factor leading to neuronal hyper-excitability in epileptic encephalopathies. The GluN2B-selective inhibitor radiprodil fully retained its pharmacological profile under these conditions, while other non-selective NMDA receptor antagonists lost their potency. Consequently, our data suggest that radiprodil may be a valuable therapeutic option for treatment of pediatric epileptic encephalopathies associated with GRIN2B mutations.


Asunto(s)
Acetamidas/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Mutación con Ganancia de Función , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Animales , Cationes Bivalentes/metabolismo , Ácido Glutámico/administración & dosificación , Ácido Glutámico/metabolismo , Humanos , Magnesio/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oocitos , Técnicas de Placa-Clamp , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus
16.
J Med Chem ; 49(18): 5442-61, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16942018

RESUMEN

A novel series of methyl ester-terminated C8-linked pyrrolobenzodiazepine (PBD)-poly(N-methylpyrrole) conjugates (50a-f) has been synthesized and their DNA interaction evaluated by thermal denaturation, DNA footprinting, and in vitro transcription stop assays. The synergistic effect of attaching a PBD unit to a polypyrrole fragment is illustrated by the large increase in DNA binding affinity (up to 50-fold) compared to the individual PBD and pyrrole components. 50a-f were found to bind mainly to identical DNA sequences but with apparent binding site widths increasing with molecular length and the majority of sites conforming to the consensus motif 5'-XGXWz (z = 3 +/- 1; W = A or T; X = any base but preferably a purine). They also provided robust sequence-selective blockade of transcription at sites corresponding approximately to their DNA footprints. 50a-f were shown to have good cellular/nuclear penetration properties, and a degree of correlation between cytotoxicity and DNA-binding affinity was observed.


Asunto(s)
Antineoplásicos/síntesis química , Benzodiazepinas/síntesis química , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Pirroles/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Benzodiazepinas/química , Benzodiazepinas/farmacología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Núcleo Celular/metabolismo , ADN/química , Huella de ADN , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Permeabilidad , Pirroles/química , Pirroles/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Transcripción Genética
17.
Front Mol Biosci ; 3: 21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27314000

RESUMEN

The Major Facilitator Superfamily (MFS) is one of the largest classes of secondary active transporters and is widely expressed in many domains of life. It is characterized by a common 12-transmembrane helix motif that allows the selective transport of a vast range of diverse substrates across the membrane. MFS transporters play a central role in many physiological processes and are increasingly recognized as potential drug targets. Despite intensive efforts, there are still only a handful of crystal structures and therefore homology modeling is likely to be a necessary process for providing models to interpret experiments for many years to come. However, the diversity of sequences and the multiple conformational states these proteins can exist in makes the process significantly more complicated, especially for sequences for which there is very little sequence identity to known templates. Inspired by the approach adopted many years ago for GPCRs, we have analyzed the large number of MFS sequences now available alongside the current structural information to propose a series of conserved contact points that can provide additional guidance for the homology modeling process. To enable cross-comparison across MFS models we also present a numbering scheme that can be used to provide a point of reference within each of the 12 transmembrane regions.

18.
CNS Drugs ; 30(11): 1055-1077, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27752944

RESUMEN

The synaptic vesicle glycoprotein SV2A belongs to the major facilitator superfamily (MFS) of transporters and is an integral constituent of synaptic vesicle membranes. SV2A has been demonstrated to be involved in vesicle trafficking and exocytosis, processes crucial for neurotransmission. The anti-seizure drug levetiracetam was the first ligand to target SV2A and displays a broad spectrum of anti-seizure activity in various preclinical models. Several lines of preclinical and clinical evidence, including genetics and protein expression changes, support an important role of SV2A in epilepsy pathophysiology. While the functional consequences of SV2A ligand binding are not fully elucidated, studies suggest that subsequent SV2A conformational changes may contribute to seizure protection. Conversely, the recently discovered negative SV2A modulators, such as UCB0255, counteract the anti-seizure effect of levetiracetam and display procognitive properties in preclinical models. More broadly, dysfunction of SV2A may also be involved in Alzheimer's disease and other types of cognitive impairment, suggesting potential novel therapies for levetiracetam and its congeners. Furthermore, emerging data indicate that there may be important roles for two other SV2 isoforms (SV2B and SV2C) in the pathogenesis of epilepsy, as well as other neurodegenerative diseases. Utilization of recently developed SV2A positron emission tomography ligands will strengthen and reinforce the pharmacological evidence that SV2A is a druggable target, and will provide a better understanding of its role in epilepsy and other neurological diseases, aiding in further defining the full therapeutic potential of SV2A modulation.


Asunto(s)
Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Glicoproteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Epilepsia/metabolismo , Humanos , Ligandos
19.
J Chem Theory Comput ; 11(6): 2743-2754, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26089745

RESUMEN

A necessary step prior to starting any membrane protein computer simulation is the creation of a well-packed configuration of protein(s) and lipids. Here, we demonstrate a method, alchembed, that can simultaneously and rapidly embed multiple proteins into arrangements of lipids described using either atomistic or coarse-grained force fields. During a short simulation, the interactions between the protein(s) and lipids are gradually switched on using a soft-core van der Waals potential. We validate the method on a range of membrane proteins and determine the optimal soft-core parameters required to insert membrane proteins. Since all of the major biomolecular codes include soft-core van der Waals potentials, no additional code is required to apply this method. A tutorial is included in the Supporting Information.

20.
PLoS One ; 10(2): e0116589, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692762

RESUMEN

The putative Major Facilitator Superfamily (MFS) transporter, SV2A, is the target for levetiracetam (LEV), which is a successful anti-epileptic drug. Furthermore, SV2A knock out mice display a severe seizure phenotype and die after a few weeks. Despite this, the mode of action of LEV is not known at the molecular level. It would be extremely desirable to understand this more fully in order to aid the design of improved anti-epileptic compounds. Since there is no structure for SV2A, homology modelling can provide insight into the ligand-binding site. However, it is not a trivial process to build such models, since SV2A has low sequence identity to those MFS transporters whose structures are known. A further level of complexity is added by the fact that it is not known which conformational state of the receptor LEV binds to, as multiple conformational states have been inferred by tomography and ligand binding assays or indeed, if binding is exclusive to a single state. Here, we explore models of both the inward and outward facing conformational states of SV2A (according to the alternating access mechanism for MFS transporters). We use a sequence conservation analysis to help guide the homology modelling process and generate the models, which we assess further with Molecular Dynamics (MD). By comparing the MD results in conjunction with docking and simulation of a LEV-analogue used in radioligand binding assays, we were able to suggest further residues that line the binding pocket. These were confirmed experimentally. In particular, mutation of D670 leads to a complete loss of binding. The results shed light on the way LEV analogues may interact with SV2A and may help with the on-going design of improved anti-epileptic compounds.


Asunto(s)
Anticonvulsivantes/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Piracetam/análogos & derivados , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Humanos , Levetiracetam , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Piracetam/metabolismo , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA