Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Theor Biol ; 455: 319-328, 2018 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-30056084

RESUMEN

Membrane proteins are vital type of proteins that serve as channels, receptors and energy transducers in a cell. They perform various important functions, which are mainly associated with their types. They are also attractive targets of drug discovery for various diseases. So predicting membrane protein types is a crucial and challenging research area in bioinformatics and proteomics. Because of vast investigation of uncharacterized protein sequences in databases, customary biophysical techniques are extremely tedious, costly and vulnerable to mistakes. Subsequently, it is very attractive to build a vigorous, solid, proficient technique to predict membrane protein types. In this work, a novel feature set Exchange Group Based Protein Sequence Representation (EGBPSR) is proposed for classification of membrane proteins with two new feature extraction strategies known as Exchange Group Local Pattern (EGLP) and Amino acid Interval Pattern (AIP). Imbalanced dataset and large dataset are often handled well by decision tree classifiers. Since imbalanced dataset are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification and Regression Tree (CART), ensemble methods such as Adaboost, Random Under Sampling (RUS) boost, Rotation forest and Random forest are analyzed. The overall accuracy achieved in predicting membrane protein types is 96.45%.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de la Membrana/genética , Análisis de Secuencia de Proteína , Programas Informáticos , Máquina de Vectores de Soporte
2.
J Theor Biol ; 435: 208-217, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28941868

RESUMEN

Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier.


Asunto(s)
Bases de Datos de Proteínas , Árboles de Decisión , Proteínas de la Membrana/clasificación , Teorema de Bayes , Biología Computacional , Proteómica , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA