Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511329

RESUMEN

Somatic/germline BRCA1/2 mutations (m)/(likely) pathogenic variants (PV) (s/gBRCAm) remain the best predictive biomarker for PARP inhibitor efficacy. As >95% of high-grade serous ovarian cancers (HGSOC) have a somatic TP53m, combined tumor-based BRCA1/2 (tBRCA) and TP53 mutation testing (tBRCA/TP53m) may improve the quality of results in somatic BRCAm identification and interpretation of the 'second hit' event, i.e., loss of heterozygosity (LOH). A total of 237 patients with HGSOC underwent tBRCA/TP53m testing. The ratio of allelic fractions (AFs) for tBRCA/TP53m was calculated to estimate the proportion of cells carrying BRCAm and to infer LOH. Among the 142/237 gBRCA results, 16.2% demonstrated a pathogenic/deleterious variant (DEL) gBRCA1/2m. Among the 195 contributive tumor samples, 43 DEL of tBRCAm (22.1%) were identified (23 gBRCAm and 20 sBRCAm) with LOH identified in 37/41 conclusive samples. The median AF of TP53m was 0.52 (0.01-0.93), confirming huge variability in tumor cellularity. Initially, three samples were considered as wild type with <10% cellularity. However, additional testing detected a very low AF (<0.05) in both BRCA1/2m and TP53m, thus reidentifying them as sBRCA1/2m. Combined tBRCA/TP53m testing is rapid, sensitive, and identifies somatic and germline BRCA1/2m. AF TP53m is essential for interpreting sBRCA1/2m in low-cellularity samples and provides indirect evidence for LOH as the 'second hit' of BRCA1/2-related tumorigenesis.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Proteína BRCA1/genética , Proteína BRCA2/genética , Mutación , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Mutación de Línea Germinal , Proteína p53 Supresora de Tumor/genética
2.
Int J Mol Sci ; 21(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481735

RESUMEN

Ovarian and breast cancers are currently defined by the main pathways involved in the tumorigenesis. The majority are carcinomas, originating from epithelial cells that are in constant division and subjected to cyclical variations of the estrogen stimulus during the female hormonal cycle, therefore being vulnerable to DNA damage. A portion of breast and ovarian carcinomas arises in the context of DNA repair defects, in which genetic instability is the backdrop for cancer initiation and progression. For these tumors, DNA repair deficiency is now increasingly recognized as a target for therapeutics. In hereditary breast/ovarian cancers (HBOC), tumors with BRCA1/2 mutations present an impairment of DNA repair by homologous recombination (HR). For many years, BRCA1/2 mutations were only screened on germline DNA, but now they are also searched at the tumor level to personalize treatment. The reason of the inactivation of this pathway remains uncertain for most cases, even in the presence of a HR-deficient signature. Evidence indicates that identifying the mechanism of HR inactivation should improve both genetic counseling and therapeutic response, since they can be useful as new biomarkers of response.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Neoplasias Ováricas/genética , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Femenino , Genes BRCA1 , Genes BRCA2 , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Mutación
3.
Hum Mutat ; 39(12): 2025-2039, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30204945

RESUMEN

The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Mutación de Línea Germinal , Regiones Promotoras Genéticas , Regiones no Traducidas 5' , Edad de Inicio , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Factor de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Femenino , Predisposición Genética a la Enfermedad , Humanos , Células MCF-7 , Factor de Transcripción PAX5/metabolismo , Unión Proteica
4.
Curr Oncol ; 29(2): 411-422, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35200537

RESUMEN

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive condition that is associated with the SMARCA4 mutation and has a dismal prognosis. It is generally diagnosed in young women. Here, we report a case of a young woman with SCCOHT harboring a rare molecular finding with a highly aggressive biological behavior. The patient had a somatic SMARCB1 mutation instead of an expected SMARCA4 alteration. Even though the patient was treated with high-dose chemotherapy followed by stem cell transplantation, she evolved with disease progression and died 11 months after her first symptoms appeared. We present a literature review of this rare disease and discuss the findings in the present patient in comparison to expected molecular alterations and options for SCCOHT treatment.


Asunto(s)
Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Neoplasias Ováricas , Tumor Rabdoide , Proteína SMARCB1 , Carcinoma de Células Pequeñas/tratamiento farmacológico , Carcinoma de Células Pequeñas/terapia , ADN Helicasas/genética , Resultado Fatal , Femenino , Humanos , Mutación , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia , Ovario/patología , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Tumor Rabdoide/terapia , Proteína SMARCB1/genética , Factores de Transcripción/genética
5.
NPJ Breast Cancer ; 8(1): 9, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039532

RESUMEN

At least 10% of the BRCA1/2 tests identify variants of uncertain significance (VUS) while the distinction between pathogenic variants (PV) and benign variants (BV) remains particularly challenging. As a typical tumor suppressor gene, the inactivation of the second wild-type (WT) BRCA1 allele is expected to trigger cancer initiation. Loss of heterozygosity (LOH) of the WT allele is the most frequent mechanism for the BRCA1 biallelic inactivation. To evaluate if LOH can be an effective predictor of BRCA1 variant pathogenicity, we carried out LOH analysis on DNA extracted from 90 breast and seven ovary tumors diagnosed in 27 benign and 55 pathogenic variant carriers. Further analyses were conducted in tumors with PVs yet without loss of the WT allele: BRCA1 promoter hypermethylation, next-generation sequencing (NGS) of BRCA1/2, and BRCAness score. Ninety-seven tumor samples were analyzed from 26 different BRCA1 variants. A relatively stable pattern of LOH (65.4%) of WT allele for PV tumors was observed, while the allelic balance (63%) or loss of variant allele (15%) was generally seen for carriers of BV. LOH data is a useful complementary argument for BRCA1 variant classification.

6.
Cancers (Basel) ; 13(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34298749

RESUMEN

Male breast cancer (MBC) is now considered molecularly different from female breast cancer (FBC). Evidence from studies indicates that common genetic and epigenetic features of FBC are not shared with those diagnosed in men. Genetic predisposition is likely to play a significant role in the tumorigenesis of this rare disease. Inherited germline variants in BRCA1 and BRCA2 account for around 2% and 10% of MBC cases, respectively, and the lifetime risk of breast cancer for men harboring BRCA1 and BRCA2 mutations is 1.2% and 6.8%. As for FBC, pathogenic mutations in other breast cancer genes have also been recently associated with an increased risk of MBC, such as PALB2 and CHEK2 mutations. However, while multigene germline panels have been extensively performed for BC female patients, the rarity of MBC has resulted in limited data to allow the understanding of the magnitude of risk and the contribution of recently identified moderate penetrance genes of FBC for MBC predisposition. This review gathers available data about the germline genetic landscape of men affected by breast cancer, estimated risk associated with these genetic variants, and current guidelines for clinical management.

7.
Cancers (Basel) ; 10(11)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453575

RESUMEN

BRCA1 and BRCA2 are major breast cancer susceptibility genes whose pathogenic variants are associated with a significant increase in the risk of breast and ovarian cancers. Current genetic screening is generally limited to BRCA1/2 exons and intron/exon boundaries. Most identified pathogenic variants cause the partial or complete loss of function of the protein. However, it is becoming increasingly clear that variants in these regions only account for a small proportion of cancer risk. The role of variants in non-coding regions beyond splice donor and acceptor sites, including those that have no qualitative effect on the protein, has not been thoroughly investigated. The key transcriptional regulatory elements of BRCA1 and BRCA2 are housed in gene promoters, untranslated regions, introns, and long-range elements. Within these sequences, germline and somatic variants have been described, but the clinical significance of the majority is currently unknown and it remains a significant clinical challenge. This review summarizes the available data on the impact of variants on non-coding regions of BRCA1/2 genes and their role on breast and ovarian cancer predisposition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA