RESUMEN
Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.
Asunto(s)
Agammaglobulinemia/inmunología , Linfocitos B/inmunología , Proteínas de Transporte de Catión/inmunología , Zinc/inmunología , Agammaglobulinemia/genética , Agammaglobulinemia/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Preescolar , Citosol/inmunología , Citosol/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Linaje , Zinc/metabolismoRESUMEN
The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation.
Asunto(s)
Benchmarking , ARN Circular , Humanos , ARN Circular/genética , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN/métodosRESUMEN
Mitochondrial replacement technology (MRT) aims to reduce the risk of serious disease in children born to women who carry pathogenic mitochondrial DNA (mtDNA) variants. By transplanting nuclear genomes from eggs of an affected woman to enucleated eggs from an unaffected donor, MRT creates new combinations of nuclear and mtDNA. Based on sets of shared sequence variants, mtDNA is classified into ~30 haplogroups. Haplogroup matching between egg donors and women undergoing MRT has been proposed as a means of reducing mtDNA sequence divergence between them. Here we investigate the potential effect of mtDNA haplogroup matching on clinical delivery of MRT and on mtDNA sequence divergence between donor/recipient pairs. Our findings indicate that haplogroup matching would limit the availability of egg donors such that women belonging to rare haplogroups may have to wait > 4 years for treatment. Moreover, we find that intra-haplogroup sequence variation is frequently within the range observed between randomly matched mtDNA pairs. We conclude that haplogroup matching would restrict the availability of MRT, without necessarily reducing mtDNA sequence divergence between donor/recipient pairs.
Asunto(s)
ADN Mitocondrial , Mitocondrias , Niño , Humanos , Femenino , Estudios de Factibilidad , Haplotipos , Mitocondrias/genética , ADN Mitocondrial/genéticaRESUMEN
BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Inestabilidad de Microsatélites , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Encefálicas/diagnóstico , Genotipo , Reparación de la Incompatibilidad de ADN/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genéticaRESUMEN
Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, http://indicate-lynch.org/), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.
Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Síndromes Neoplásicos Hereditarios , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Mutación del Sistema de Lectura , Reparación de la Incompatibilidad de ADNRESUMEN
The scarcity of embryonic/foetal material as a resource for direct study means that there is still limited understanding of human retina development. Here, we present an integrated transcriptome analysis combined with immunohistochemistry in human eye and retinal samples from 4 to 19 post-conception weeks. This analysis reveals three developmental windows with specific gene expression patterns that informed the sequential emergence of retinal cell types and enabled identification of stage-specific cellular and biological processes, and transcriptional regulators. Each stage is characterised by a specific set of alternatively spliced transcripts that code for proteins involved in the formation of the photoreceptor connecting cilium, pre-mRNA splicing and epigenetic modifiers. Importantly, our data show that the transition from foetal to adult retina is characterised by a large increase in the percentage of mutually exclusive exons that code for proteins involved in photoreceptor maintenance. The circular RNA population is also defined and shown to increase during retinal development. Collectively, these data increase our understanding of human retinal development and the pre-mRNA splicing process, and help to identify new candidate disease genes.
Asunto(s)
Perfilación de la Expresión Génica , Retina/embriología , Retina/metabolismo , Empalme Alternativo/genética , Animales , Biomarcadores/metabolismo , Cilios/metabolismo , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Análisis de Componente Principal , ARN/genética , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Circular , Retina/citología , Retina/ultraestructura , Transcriptoma/genéticaRESUMEN
RATIONALE: Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. OBJECTIVE: We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. METHODS AND RESULTS: Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10-8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%-6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%-3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. CONCLUSIONS: The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients.
Asunto(s)
Exoma , Tasa de Mutación , Tetralogía de Fallot/genética , Autoantígenos/genética , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Proteínas de Homeodominio/genética , Humanos , Mutación con Pérdida de Función , Mutación Missense , Proteínas Nucleares/genética , Receptor Notch1/genética , Transactivadores/genética , Factores de Transcripción/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
Microsatellite instability (MSI) testing of colorectal cancers (CRCs) is used to screen for Lynch syndrome (LS), a hereditary cancer-predisposition, and can be used to predict response to immunotherapy. Here, we present a single-molecule molecular inversion probe and sequencing-based MSI assay and demonstrate its clinical validity according to existing guidelines. We amplified 24 microsatellites in multiplex and trained a classifier using 98 CRCs, which accommodates marker specific sensitivities to MSI. Sample classification achieved 100% concordance with the MSI Analysis System v1.2 (Promega) in three independent cohorts, totaling 220 CRCs. Backward-forward stepwise selection was used to identify a 6-marker subset of equal accuracy to the 24-marker panel. Assessment of assay detection limits showed that the 24-marker panel is marginally more robust to sample variables than the 6-marker subset, detecting as little as 3% high levels of MSI DNA in sample mixtures, and requiring a minimum of 10 template molecules to be sequenced per marker for >95% accuracy. BRAF c.1799 mutation analysis was also included to streamline LS testing, with all c.1799T>A variants being correctly identified. The assay, therefore, provides a cheap, robust, automatable, and scalable MSI test with internal quality controls, suitable for clinical cancer diagnostics.
Asunto(s)
Marcadores Genéticos , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Ensayos Analíticos de Alto Rendimiento , Inestabilidad de Microsatélites , Repeticiones de Microsatélite , Alelos , Biomarcadores de Tumor , Línea Celular , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN , Estudios de Asociación Genética/métodos , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Técnicas de Diagnóstico Molecular , Fosforilación , Reproducibilidad de los ResultadosRESUMEN
Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies.
Asunto(s)
Encéfalo/patología , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Investigación Biomédica , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Genotipo , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patologíaRESUMEN
PURPOSE: Biallelic germline mismatch repair (MMR) gene pathogenic variants (PVs) cause constitutional MMR deficiency (CMMRD), a highly penetrant childhood cancer syndrome phenotypically overlapping with neurofibromatosis type 1 (NF1). CMMRD testing in suspected NF1 children without NF1/SPRED1 PVs enables inclusion of CMMRD positives into monitoring programs prior to tumor onset. However, testing is associated with potential harms and the prevalence of CMMRD among these children is unknown. METHODS: Using a simple and scalable microsatellite instability (MSI) assay of non-neoplastic leukocyte DNA to detect CMMRD, we retrospectively screened >700 children suspected of sporadic NF1 but lacking NF1/SPRED1 PVs. RESULTS: For three of seven MSI-positive patients germline MMR gene PVs confirmed the diagnosis of CMMRD. Founder variants NM_000535.5(PMS2):c.736_741delinsTGTGTGTGAAG, prevalent in Europe and North America, and NM_000179.2(MSH6):c.10C>G, affecting 1:400 French Canadians, represented two of five PVs. The prevalence of CMMRD was 3/735 (0.41%, 95% confidence interval [CI]: 0.08-1.19%). CONCLUSION: Our empirical data provide reliable numbers for genetic counseling and confirm previous prevalence estimations, on which Care for CMMRD consortium guidelines are based. These advocate CMMRD testing of preselected patients rather than offering reflex testing to all suspected sporadic NF1 children lacking NF1/SPRED1 PVs. The possibility of founder effects should be considered alongside these testing guidelines.
Asunto(s)
Neoplasias Colorrectales , Neurofibromatosis 1 , Proteínas Adaptadoras Transductoras de Señales , Neoplasias Encefálicas , Canadá , Niño , Reparación de la Incompatibilidad de ADN/genética , Europa (Continente) , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Síndromes Neoplásicos Hereditarios , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/epidemiología , Neurofibromatosis 1/genética , América del Norte , Estudios RetrospectivosRESUMEN
Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O(6)-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O(6)-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O(6)-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER.
Asunto(s)
Transferasas Alquil y Aril/metabolismo , Reparación del ADN , Guanina/análogos & derivados , Proteínas de Schizosaccharomyces pombe/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Western Blotting , Cristalografía por Rayos X , Daño del ADN , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Citometría de Flujo , Fase G1/efectos de los fármacos , Genoma Fúngico/genética , Guanina/química , Guanina/metabolismo , Metilnitronitrosoguanidina/toxicidad , Modelos Moleculares , Mutación , Compuestos de Nitrosourea/toxicidad , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética/genéticaRESUMEN
Constitutional mismatch repair deficiency (CMMRD) is caused by germline pathogenic variants in both alleles of a mismatch repair gene. Patients have an exceptionally high risk of numerous pediatric malignancies and benefit from surveillance and adjusted treatment. The diversity of its manifestation, and ambiguous genotyping results, particularly from PMS2, can complicate diagnosis and preclude timely patient management. Assessment of low-level microsatellite instability in nonneoplastic tissues can detect CMMRD, but current techniques are laborious or of limited sensitivity. Here, we present a simple, scalable CMMRD diagnostic assay. It uses sequencing and molecular barcodes to detect low-frequency microsatellite variants in peripheral blood leukocytes and classifies samples using variant frequencies. We tested 30 samples from 26 genetically-confirmed CMMRD patients, and samples from 94 controls and 40 Lynch syndrome patients. All samples were correctly classified, except one from a CMMRD patient recovering from aplasia. However, additional samples from this same patient tested positive for CMMRD. The assay also confirmed CMMRD in six suspected patients. The assay is suitable for both rapid CMMRD diagnosis within clinical decision windows and scalable screening of at-risk populations. Its deployment will improve patient care, and better define the prevalence and phenotype of this likely underreported cancer syndrome.
Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Leucocitos/metabolismo , Inestabilidad de Microsatélites , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Alelos , Estudios de Asociación Genética/métodos , Mutación de Línea Germinal , Humanos , Repeticiones de MicrosatéliteRESUMEN
BACKGROUND: Clusters of rare cylindroma or spiradenoma tumors are a recurrent clinical presentation, yet conventional genetic testing results in individuals with these tumors are frequently normal. OBJECTIVE: To determine if genetic mosaicism accounts for such cases. METHODS: A study of 6 cases from a series of 55 patients who met criteria for diagnostic gene testing for pathogenic CYLD variants over a 5-year period (2012-2017) was performed. A novel genetic assay was used to study DNA from peripheral blood leukocytes and, where possible, matched skin and tumor tissue. RESULTS: Two patients had mosaic pathogenic CYLD variants in both the blood and skin. One of these patients transmitted a pathogenic variant to her daughter, and we report the novel phenotype of a contiguous gene deletion syndrome involving CYLD. Two patients had recurrent pathogenic variants in skin tumors from a single cluster but none detectable in the blood. LIMITATIONS: The remaining 2 patients had clinical features of mosaicism, but these cases were not solved with the assays used because of a lack of access of fresh tumor tissue. CONCLUSION: Genetic mosaicism should be considered in patients presenting with clustered cylindromas, because this may inform genetic testing and counseling of these patients.
Asunto(s)
Carcinoma Adenoide Quístico/patología , Enzima Desubiquitinante CYLD/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Síndromes Neoplásicos Hereditarios/genética , Neoplasias Cutáneas/patología , Adulto , Anciano , Carcinoma Adenoide Quístico/genética , Diagnóstico Diferencial , Humanos , Persona de Mediana Edad , Mosaicismo , Síndromes Neoplásicos Hereditarios/epidemiología , Reacción en Cadena de la Polimerasa/métodos , Pronóstico , Estudios Retrospectivos , Muestreo , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/genéticaRESUMEN
BACKGROUND: Circular RNAs (circRNAs) are predominantly derived from protein coding genes, and some can act as microRNA sponges or transcriptional regulators. Changes in circRNA levels have been identified during human development which may be functionally important, but lineage-specific analyses are currently lacking. To address this, we performed RNAseq analysis of human embryonic stem (ES) cells differentiated for 90 days towards 3D laminated retina. RESULTS: A transcriptome-wide increase in circRNA expression, size, and exon count was observed, with circRNA levels reaching a plateau by day 45. Parallel statistical analyses, controlling for sample and locus specific effects, identified 239 circRNAs with expression changes distinct from the transcriptome-wide pattern, but these all also increased in abundance over time. Surprisingly, circRNAs derived from long non-coding RNAs (lncRNAs) were found to account for a significantly larger proportion of transcripts from their loci of origin than circRNAs from coding genes. The most abundant, circRMST:E12-E6, showed a > 100X increase during differentiation accompanied by an isoform switch, and accounts for > 99% of RMST transcripts in many adult tissues. The second most abundant, circFIRRE:E10-E5, accounts for > 98% of FIRRE transcripts in differentiating human ES cells, and is one of 39 FIRRE circRNAs, many of which include multiple unannotated exons. CONCLUSIONS: Our results suggest that during human ES cell differentiation, changes in circRNA levels are primarily globally controlled. They also suggest that RMST and FIRRE, genes with established roles in neurogenesis and topological organisation of chromosomal domains respectively, are processed as circular lncRNAs with only minor linear species.
Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias Humanas/citología , Isoformas de ARN/genética , ARN Largo no Codificante/genética , Adulto , Regulación hacia Abajo , Exones/genética , Sitios Genéticos/genética , Humanos , Neuronas/citología , Análisis de Secuencia de ARN , Factores de Tiempo , Transcripción GenéticaRESUMEN
In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription. Here we show that circRNAs are enriched in human platelets 17- to 188-fold relative to nucleated tissues and 14- to 26-fold relative to samples digested with RNAse R to selectively remove linear RNA. We compare RNAseq read depths inside and outside circRNAs to provide in silico evidence of transcript circularity, show that exons within circRNAs are enriched on average 12.7 times in platelets relative to nucleated tissues and identify 3162 genes significantly enriched for circRNAs, including some where all RNAseq reads appear to be derived from circular molecules. We also confirm that this is a feature of other anucleate cells through transcriptome sequencing of mature erythrocytes, demonstrate that circRNAs are not enriched in cultured megakaryocytes, and demonstrate that linear RNAs decay more rapidly than circRNAs in platelet preparations. Collectively, these results suggest that circulating platelets have lost >90% of their progenitor mRNAs and that translation in platelets occurs against the backdrop of a highly degraded transcriptome. Finally, we find that transcripts previously classified as products of reverse transcriptase template switching are both enriched in platelets and resistant to decay, countering the recent suggestion that up to 50% of rearranged RNAs are artifacts.
Asunto(s)
Plaquetas/metabolismo , Estabilidad del ARN/genética , ARN/genética , Transcriptoma/genética , Exones/genética , Exorribonucleasas/metabolismo , Humanos , Megacariocitos/metabolismo , ARN Circular , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los ResultadosRESUMEN
Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level.
Asunto(s)
ADN Mitocondrial/aislamiento & purificación , Patrón de Herencia , Análisis de Secuencia de ADN , Biología Computacional , ADN Mitocondrial/genética , Femenino , Frecuencia de los Genes , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Oocitos/metabolismo , Polimorfismo de Nucleótido Simple , Espermatozoides/metabolismoRESUMEN
The demonstration of impaired C regulation in the thrombotic microangiopathy (TMA) atypical hemolytic uremic syndrome (aHUS) resulted in the successful introduction of the C inhibitor eculizumab into clinical practice. C abnormalities account for approximately 50% of aHUS cases; however, mutations in the non-C gene diacylglycerol kinase-ε have been described recently in individuals not responsive to eculizumab. We report here a family in which the proposita presented with aHUS but did not respond to eculizumab. Her mother had previously presented with a post-renal transplant TMA. Both the proposita and her mother also had Charcot-Marie-Tooth disease. Using whole-exome sequencing, we identified a mutation in the inverted formin 2 gene (INF2) in the mutational hotspot for FSGS. Subsequent analysis of the Newcastle aHUS cohort identified another family with a functionally-significant mutation in INF2 In this family, renal transplantation was associated with post-transplant TMA. All individuals with INF2 mutations presenting with a TMA also had aHUS risk haplotypes, potentially accounting for the genetic pleiotropy. Identifying individuals with TMAs who may not respond to eculizumab will avoid prolonged exposure of such individuals to the infectious complications of terminal pathway C blockade.
Asunto(s)
Síndrome Hemolítico Urémico Atípico/complicaciones , Síndrome Hemolítico Urémico Atípico/genética , Proteínas de Microfilamentos/genética , Mutación , Microangiopatías Trombóticas/etiología , Adolescente , Niño , Femenino , Forminas , Humanos , LinajeRESUMEN
PURPOSE: We aimed to achieve a retrospective molecular diagnosis by applying state-of-the-art genomic sequencing methods to past patients with T-B+NK+ severe combined immunodeficiency (SCID). We included identification of copy number variations (CNVs) by whole exome sequencing (WES) using the CNV calling method ExomeDepth to detect gene alterations for which routine Sanger sequencing analysis is not suitable, such as large heterozygous deletions. METHODS: Of a total of 12 undiagnosed patients with T-B+NK+ SCID, we analyzed eight probands by WES, using GATK to detect single nucleotide variants (SNVs) and small insertions and deletions (INDELs) and ExomeDepth to detect CNVs. RESULTS: We found heterozygous single- or multi-exon deletions in IL7R, a known disease gene for autosomal recessive T-B+NK+ SCID, in four families (seven patients). In three families (five patients), these deletions coexisted with a heterozygous splice site or nonsense mutation elsewhere in the same gene, consistent with compound heterozygosity. In our cohort, about a quarter of T-B+NK+ SCID patients (26%) had such compound heterozygous IL7R deletions. CONCLUSIONS: We show that heterozygous IL7R exon deletions are common in T-B+NK+ SCID and are detectable by WES. They should be considered if Sanger sequencing fails to detect homozygous or compound heterozygous IL7R SNVs or INDELs.
Asunto(s)
Secuenciación del Exoma , Exones , Heterocigoto , Receptores de Interleucina-7/genética , Eliminación de Secuencia , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Femenino , Expresión Génica , Humanos , Mutación INDEL , Activación de Linfocitos , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Masculino , Polimorfismo de Nucleótido Simple , Receptores de Interleucina-7/metabolismo , Estudios Retrospectivos , Factor de Transcripción STAT5/metabolismo , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/terapia , Flujo de TrabajoRESUMEN
Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350.
Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedades Genéticas Congénitas/genética , Trastornos Linfoproliferativos/genética , Factor de Transcripción STAT3/genética , Adolescente , Adulto , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/inmunología , Enfermedades Genéticas Congénitas/patología , Humanos , Lactante , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/patología , Masculino , Mutación , Fosforilación/genética , Fosforilación/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patologíaRESUMEN
BACKGROUND: Early diagnosis of Parkinson's disease and mild cognitive impairment is important to enable prompt treatment and improve patient welfare, yet no standard diagnostic test is available. Metabolomics is a powerful tool used to elucidate disease mechanisms and identify potential biomarkers. OBJECTIVES: The objective of this study was to use metabolic profiling to understand the pathoetiology of Parkinson's disease and to identify potential disease biomarkers. METHODS: This study compared the serological metabolomic profiles of early-stage Parkinson's patients (diagnosed < 12 months) to asymptomatic matched controls using an established array based detection system (DiscoveryHD4™, Metabolon, UK), correlating metabolite levels to clinical measurements of cognitive impairment. RESULTS: A total of 1434 serological metabolites were assessed in early-stage Parkinson's disease cases (n = 41) and asymptomatic matched controls (n = 40). Post-quality control, statistical analysis identified n = 20 metabolites, predominantly metabolites of the fatty acid oxidation pathway, associated with Parkinson's disease and mild cognitive impairment. Receiver operator curve assessment confirmed that the nine fatty acid oxidation metabolites had good predictive accuracy (area under curve = 0.857) for early-stage Parkinson's disease and mild cognitive impairment (area under curve = 0.759). CONCLUSIONS: Our study indicates that fatty acid oxidation may be an important component in the pathophysiology of Parkinson's disease and may have potential as a diagnostic biomarker for disease onset and mild cognitive impairment. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.