Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 95(13): e0013621, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33853958

RESUMEN

Arboviruses are transmitted by specific vectors, and the reasons for this specificity are not fully understood. One contributing factor is the existence of tissue barriers within the vector such as the midgut escape barrier. We used microRNA (miRNA) targeting of Sindbis virus (SINV) to study how replication in midgut cells contributes to overcoming this barrier in the mosquito Aedes aegypti. SINV constructs were designed to be attenuated specifically in midgut cells by inserting binding sites for midgut-specific miRNAs into either the 3' untranslated region (MRE3'miRT) or the structural open reading frame (MRE-ORFmiRT) of the SINV genome. Both miRNA-targeted viruses replicated less efficiently than control viruses in the presence of these miRNAs. When mosquitoes were given infectious blood meals containing miRNA-targeted viruses, only around 20% (MRE3'miRT) or 40% (MRE-ORFmiRT) of mosquitoes developed disseminated infection. In contrast, dissemination occurred in almost all mosquitoes fed control viruses. Deep sequencing of virus populations from individual mosquitoes ruled out selection for mutations in the inserted target sequences as the cause for dissemination in these mosquitoes. In mosquitoes that became infected with miRNA-targeted viruses, titers were equivalent to those of mosquitoes infected with control virus in both the midgut and the carcass, and there was no evidence of a threshold titer necessary for dissemination. Instead, it appeared that if infection was successfully established in the midgut, replication and dissemination were largely normal. Our results support the hypothesis that replication is an important factor in allowing SINV to overcome the midgut escape barrier but hint that other factors are also likely involved. IMPORTANCE When a mosquito ingests an arbovirus during a blood meal, the arbovirus must escape from the midgut of the vector and infect the salivary glands in order to be transmitted to a new host. We used tissue-specific miRNA targeting to examine the requirement for Sindbis virus (SINV) to replicate in midgut epithelium in order to cause disseminated infection in the mosquito Aedes aegypti. Our results indicate that specifically reducing the ability of SINV to replicate in the mosquito midgut reduces its overall ability to establish infection in the mosquito, but if infection is established, replication and dissemination occur normally. These results are consistent with an importance for replication in the midgut epithelium in aiding arboviruses in crossing the midgut barrier.


Asunto(s)
Aedes/virología , Tracto Gastrointestinal/virología , MicroARNs/genética , Virus Sindbis/crecimiento & desarrollo , Replicación Viral/genética , Animales , Línea Celular , Cricetinae , Mosquitos Vectores/virología , Especificidad de Órganos , Glándulas Salivales/virología , Virus Sindbis/genética , Virus Sindbis/metabolismo
2.
J Evol Biol ; 32(6): 580-591, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30860304

RESUMEN

Major habitat transitions, such as those from marine to freshwater habitats or from aquatic to terrestrial habitats, have occurred infrequently in animal evolution and may represent a barrier to diversification. Identifying genomic events associated with these transitions can help us better understand mechanisms that allow animals to cross these barriers and diversify in new habitats. Study of the Capitella telata and Helobdella robusta genomes allows examination of one such habitat transition (marine to freshwater) in Annelida. Initial examination of these genomes indicated that the freshwater leech H. robusta contains many more copies (12) of the sodium-potassium pump alpha-subunit (Na+ /K+ -ATPase) gene than does the marine polychaete C. telata (2). The sodium-potassium pump plays a key role in maintenance of cellular ionic balance and osmoregulation, and Na+ /K+ -ATPase duplications may have helped annelids invade and diversify in freshwater habitats. To assess whether the timing of Na+ /K+ -ATPase duplications coincided with the marine-to-freshwater transition in Clitellata, we used transcriptomic data from 18 annelid taxa, along with the two genomes, to infer a species phylogeny and identified Na+ /K+ -ATPase gene transcripts in order to infer the timing of gene duplication events using tree-based methods. The inferred timing of Na+ /K+ -ATPase duplication events is consistent with the timing of the initial marine-to-freshwater transition early in the history of clitellate annelids, supporting the hypothesis that gene duplications may have played a role in the annelid diversification into freshwater habitats.


Asunto(s)
Duplicación de Gen , Sanguijuelas/genética , Filogenia , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Ecosistema , Genoma , Familia de Multigenes
3.
J Exp Biol ; 222(Pt 24)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31727759

RESUMEN

Environmentally induced plasticity in gene expression is one of the underlying mechanisms of adaptation to habitats with variable environments. For example, euryhaline crustaceans show predictable changes in the expression of ion-transporter genes during salinity transfers, although studies have typically been limited to specific genes, taxa and ecosystems of interest. Here, we investigated responses to salinity change at multiple organizational levels in five species of shrimp representing at least three independent invasions of the anchialine ecosystem, defined as habitats with marine and freshwater influences with spatial and temporal fluctuations in salinity. Although all five species were generally strong osmoregulators, salinity-induced changes in gill physiology and gene expression were highly species specific. While some species exhibited patterns similar to those of previously studied euryhaline crustaceans, instances of distinct and atypical patterns were recovered from closely related species. Species-specific patterns were found when examining: (1) numbers and identities of differentially expressed genes, (2) salinity-induced expression of genes predicted a priori to play a role in osmoregulation, and (3) salinity-induced expression of orthologs shared among all species. Notably, ion transport genes were unchanged in the atyid Halocaridina rubra while genes normally associated with vision and light perception were among those most highly upregulated. Potential reasons for species-specific patterns are discussed, including variation among anchialine habitats in salinity regimes and divergent evolution in anchialine taxa. Underexplored mechanisms of osmoregulation in crustaceans revealed here by the application of transcriptomic approaches to ecologically and taxonomically understudied systems are also explored.


Asunto(s)
Adaptación Biológica , Decápodos/fisiología , Expresión Génica , Salinidad , Agua de Mar , Animales , Decápodos/genética , Ecosistema , Transporte Iónico , Osmorregulación , Especificidad de la Especie
4.
BMC Evol Biol ; 17(1): 123, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28558722

RESUMEN

BACKGROUND: Earthworms (Crassiclitellata) are a diverse group of annelids of substantial ecological and economic importance. Earthworms are primarily terrestrial infaunal animals, and as such are probably rather poor natural dispersers. Therefore, the near global distribution of earthworms reflects an old and likely complex evolutionary history. Despite a long-standing interest in Crassiclitellata, relationships among and within major clades remain unresolved. METHODS: In this study, we evaluate crassiclitellate phylogenetic relationships using 38 new transcriptomes in combination with publicly available transcriptome data. Our data include representatives of nearly all extant earthworm families and a representative of Moniligastridae, another terrestrial annelid group thought to be closely related to Crassiclitellata. We use a series of differentially filtered data matrices and analyses to examine the effects of data partitioning, missing data, compositional and branch-length heterogeneity, and outgroup inclusion. RESULTS AND DISCUSSION: We recover a consistent, strongly supported ingroup topology irrespective of differences in methodology. The topology supports two major earthworm clades, each of which consists of a Northern Hemisphere subclade and a Southern Hemisphere subclade. Divergence time analysis results are concordant with the hypothesis that these north-south splits are the result of the breakup of the supercontinent Pangaea. CONCLUSIONS: These results support several recently proposed revisions to the classical understanding of earthworm phylogeny, reveal two major clades that seem to reflect Pangaean distributions, and raise new questions about earthworm evolutionary relationships.


Asunto(s)
Oligoquetos/clasificación , Oligoquetos/genética , Suelo , Animales , Evolución Biológica , Filogenia
5.
BMC Evol Biol ; 17(1): 85, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28330441

RESUMEN

BACKGROUND: Despite extensive study on hemoglobins and hemocyanins, little is known about hemerythrin (Hr) evolutionary history. Four subgroups of Hrs have been documented, including: circulating Hr (cHr), myohemerythrin (myoHr), ovohemerythrin (ovoHr), and neurohemerythrin (nHr). Annelids have the greatest diversity of oxygen carrying proteins among animals and are the only phylum in which all Hr subgroups have been documented. To examine Hr diversity in annelids and to further understand evolution of Hrs, we employed approaches to survey annelid transcriptomes in silico. RESULTS: Sequences of 214 putative Hr genes were identified from 44 annelid species in 40 different families and Bayesian inference revealed two major clades with strong statistical support. Notably, the topology of the Hr gene tree did not mirror the phylogeny of Annelida as presently understood, and we found evidence of extensive Hr gene duplication and loss in annelids. Gene tree topology supported monophyly of cHrs and a myoHr clade that included nHrs sequences, indicating these designations are functional rather than evolutionary. CONCLUSIONS: The presence of several cHrs in early branching taxa suggests that a variety of Hrs were present in the common ancestor of extant annelids. Although our analysis was limited to expressed-coding regions, our findings demonstrate a greater diversity of Hrs among annelids than previously reported.


Asunto(s)
Anélidos/genética , Hemeritrina/genética , Animales , Anélidos/clasificación , Secuencia de Bases , Teorema de Bayes , Evolución Molecular , Hemeritrina/química , Filogenia , Alineación de Secuencia
6.
Nature ; 477(7365): 452-6, 2011 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-21892190

RESUMEN

Evolutionary relationships among the eight major lineages of Mollusca have remained unresolved despite their diversity and importance. Previous investigations of molluscan phylogeny, based primarily on nuclear ribosomal gene sequences or morphological data, have been unsuccessful at elucidating these relationships. Recently, phylogenomic studies using dozens to hundreds of genes have greatly improved our understanding of deep animal relationships. However, limited genomic resources spanning molluscan diversity has prevented use of a phylogenomic approach. Here we use transcriptome and genome data from all major lineages (except Monoplacophora) and recover a well-supported topology for Mollusca. Our results strongly support the Aculifera hypothesis placing Polyplacophora (chitons) in a clade with a monophyletic Aplacophora (worm-like molluscs). Additionally, within Conchifera, a sister-taxon relationship between Gastropoda and Bivalvia is supported. This grouping has received little consideration and contains most (>95%) molluscan species. Thus we propose the node-based name Pleistomollusca. In light of these results, we examined the evolution of morphological characters and found support for advanced cephalization and shells as possibly having multiple origins within Mollusca.


Asunto(s)
Genoma/genética , Moluscos/clasificación , Moluscos/genética , Filogenia , Animales , Bivalvos/anatomía & histología , Bivalvos/clasificación , Bivalvos/genética , Etiquetas de Secuencia Expresada , Gastrópodos/anatomía & histología , Gastrópodos/clasificación , Gastrópodos/genética , Perfilación de la Expresión Génica , Genes , Genómica , Modelos Biológicos , Moluscos/anatomía & histología
7.
J Mol Evol ; 82(4-5): 219-29, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27100359

RESUMEN

Most members of Siboglinidae (Annelida) harbor endosymbiotic bacteria that allow them to thrive in extreme environments such as hydrothermal vents, methane seeps, and whale bones. These symbioses are enabled by specialized hemoglobins (Hbs) that are able to bind hydrogen sulfide for transportation to their chemosynthetic endosymbionts. Sulfur-binding capabilities are hypothesized to be due to cysteine residues at key positions in both vascular and coelomic Hbs, especially in the A2 and B2 chains. Members of the genus Osedax, which live on whale bones, do not have chemosynthetic endosymbionts, but instead harbor heterotrophic bacteria capable of breaking down complex organic compounds. Although sulfur-binding capabilities are important in other siboglinids, we questioned whether Osedax retained these cysteine residues and the potential ability to bind hydrogen sulfide. To answer these questions, we used high-throughput DNA sequencing to isolate and analyze Hb sequences from 8 siboglinid lineages. For Osedax mucofloris, we recovered three (A1, A2, and B1) Hb chains, but the B2 chain was not identified. Hb sequences from gene subfamilies A2 and B2 were translated and aligned to determine conservation of cysteine residues at previously identified key positions. Hb linker sequences were also compared to determine similarity between Osedax and siboglinids/sulfur-tolerant annelids. For O. mucofloris, our results found conserved cysteines within the Hb A2 chain. This finding suggests that Hb in O. mucofloris has retained some capacity to bind hydrogen sulfide, likely due to the need to detoxify this chemical compound that is abundantly produced within whale bones.


Asunto(s)
Hemoglobinas/genética , Poliquetos/genética , Animales , Anélidos/genética , Bacterias/genética , Evolución Biológica , Huesos , Cisteína/genética , Ecosistema , Hemoglobinas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Poliquetos/metabolismo , Azufre/metabolismo , Simbiosis , Transcriptoma
8.
Mol Biol Evol ; 31(6): 1391-401, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24567512

RESUMEN

Annelida is one of three animal groups possessing segmentation and is central in considerations about the evolution of different character traits. It has even been proposed that the bilaterian ancestor resembled an annelid. However, a robust phylogeny of Annelida, especially with respect to the basal relationships, has been lacking. Our study based on transcriptomic data comprising 68,750-170,497 amino acid sites from 305 to 622 proteins resolves annelid relationships, including Chaetopteridae, Amphinomidae, Sipuncula, Oweniidae, and Magelonidae in the basal part of the tree. Myzostomida, which have been indicated to belong to the basal radiation as well, are now found deeply nested within Annelida as sister group to Errantia in most analyses. On the basis of our reconstruction of a robust annelid phylogeny, we show that the basal branching taxa include a huge variety of life styles such as tube dwelling and deposit feeding, endobenthic and burrowing, tubicolous and filter feeding, and errant and carnivorous forms. Ancestral character state reconstruction suggests that the ancestral annelid possessed a pair of either sensory or grooved palps, bicellular eyes, biramous parapodia bearing simple chaeta, and lacked nuchal organs. Because the oldest fossil of Annelida is reported for Sipuncula (520 Ma), we infer that the early diversification of annelids took place at least in the Lower Cambrian.


Asunto(s)
Anélidos/clasificación , Anélidos/genética , Genómica/métodos , Filogenia , Animales , Evolución Molecular , Fósiles , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma
9.
J Mol Evol ; 80(3-4): 193-208, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25758350

RESUMEN

Cyclooxygenase (COX) enzymatically converts arachidonic acid into prostaglandin G/H in animals and has importance during pregnancy, digestion, and other physiological functions in mammals. COX genes have mainly been described from vertebrates, where gene duplications are common, but few studies have examined COX in invertebrates. Given the increasing ease in generating genomic data, as well as recent, although incomplete descriptions of potential COX sequences in Mollusca, Crustacea, and Insecta, assessing COX evolution across Metazoa is now possible. Here, we recover 40 putative COX orthologs by searching publicly available genomic resources as well as ~250 novel invertebrate transcriptomic datasets. Results suggest the common ancestor of Cnidaria and Bilateria possessed a COX homolog similar to those of vertebrates, although such homologs were not found in poriferan and ctenophore genomes. COX was found in most crustaceans and the majority of molluscs examined, but only specific taxa/lineages within Cnidaria and Annelida. For example, all octocorallians appear to have COX, while no COX homologs were found in hexacorallian datasets. Most species examined had a single homolog, although species-specific COX duplications were found in members of Annelida, Mollusca, and Cnidaria. Additionally, COX genes were not found in Hemichordata, Echinodermata, or Platyhelminthes, and the few previously described COX genes in Insecta lacked appreciable sequence homology (although structural analyses suggest these may still be functional COX enzymes). This analysis provides a benchmark for identifying COX homologs in future genomic and transcriptomic datasets, and identifies lineages for future studies of COX.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Prostaglandina-Endoperóxido Sintasas/genética , Animales , Cordados/genética , Crustáceos/genética , Bases de Datos Genéticas , Equinodermos/genética , Insectos/genética , Datos de Secuencia Molecular , Moluscos/genética , Filogenia , Prostaglandina-Endoperóxido Sintasas/metabolismo , Alineación de Secuencia
10.
Mol Phylogenet Evol ; 85: 221-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25721539

RESUMEN

Deep-sea tubeworms in the annelid family Siboglinidae have drawn considerable interest regarding their ecology and evolutionary biology. As adults, they lack a digestive tract and rely on endosymbionts for nutrition. Moreover, they are important members of chemosynthetic environments including hydrothermal vents, cold seeps, muddy sediments, and whale bones. Evolution and diversification of siboglinids has been associated with host-symbiont relationships and reducing habitats. Despite their importance, the taxonomy and phylogenetics of this clade are debated due to conflicting results. In this study, 10 complete and 2 partial mitochondrial genomes and one transcriptome were sequenced and analyzed to address siboglinid evolution. Notably, repeated nucleotide motifs were found in control regions of these mt genomes, which may explain previous challenges of sequencing siboglinid mt genomes. Phylogenetic analyses of amino acid and nucleotide datasets were conducted in order to infer evolutionary history. Both analyses generally had strong nodal support and suggest Osedax is most closely related to the Vestimentifera+Sclerolinum clade, rather than Frenulata, as recently reported. These results imply Osedax, the only siboglinid lineage with heterotrophic endosymbionts, evolved from a lineage utilizing chemoautotrophic symbionts.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial , Filogenia , Poliquetos/clasificación , Animales , ADN Mitocondrial/genética , Ecosistema , Poliquetos/genética , Análisis de Secuencia de ADN , Simbiosis , Transcriptoma
11.
Mol Ecol ; 23(17): 4185-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25155714

RESUMEN

The modern synthesis was a seminal period in the biological sciences, establishing many of the core principles of evolutionary biology that we know today. Significant catalysts were the contributions of R.A. Fisher, J.B.S. Haldane and Sewall Wright (and others) developing the theoretical underpinning of population genetics, thus demonstrating adaptive evolution resulted from the interplay of forces such as natural selection and mutation within groups of individuals occupying the same space and time (i.e. a population). Given its importance, it is surprising that detailed population genetic data remain lacking for numerous organisms vital to many ecosystems. For example, the coral reef ecosystem is well recognized for its high biodiversity and productivity, numerous ecological services and significant economic and societal values (Moberg & Folke 1999;Cinner 2014). Many coral reef invertebrates form symbiotic relationships with single-celled dinoflagellates within the genus Symbiodinium Freudenthal (Taylor 1974), with hosts providing these (typically) intracellular symbionts with by-products of metabolism and in turn receiving photosynthetically fixed carbon capable of meeting hosts' respiratory demands (Falkowski et al. 1984; Muscatine et al. 1984). Unfortunately, the health and integrity of the coral reef ecosystem has been significantly and negatively impacted by onslaughts like anthropogenic eutrophication and disease in addition to global climate change, with increased incidences of 'bleaching' events (characterized as the loss of photosynthetic pigments from the algal cell or massive reduction of Symbiodinium density from hosts' tissue) and host mortality leading to staggering declines in geographic coverage (Bruno & Selig 2007) that have raised questions on the viability of this ecosystem as we know it (Bellwood et al. 2004; Parmesan 2006). One avenue towards anticipating the future of the coral reef ecosystem is by developing a broader and deeper understanding of the current genotypic diversity encompassed within and between populations of their keystone species, the scleractinian corals and dinoflagellate symbionts, as they potentially possess functional variation (either singularly or in combination) that may come under selection due to the ongoing and rapid environmental changes they are experiencing. However, such studies, especially for members of the genus Symbiodinium, are sparse. In this issue, Baums et al. (2014) provide a significant contribution by documenting the range-wide population genetics of Symbiodinium 'fitti' (Fig.1 ) in the context of complementary data from its host, the endangered Caribbean elkhorn coral Acropora palmata (Fig. 2). Notable results of this study include a single S. 'fitti' genotype typically dominates an individual A. palmata colony both spatially and temporally, gene flow among coral host populations is a magnitude higher to that of its symbiont populations, and the partners possess disparate patterns of genetic differentiation across the Greater Caribbean. The implications of such findings are discussed herein.


Asunto(s)
Antozoos/genética , Dinoflagelados/genética , Genética de Población , Simbiosis , Animales
12.
J Exp Biol ; 217(Pt 13): 2309-20, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24744415

RESUMEN

Studies of euryhaline crustaceans have identified conserved osmoregulatory adaptions allowing hyper-osmoregulation in dilute waters. However, previous studies have mainly examined decapod brachyurans with marine ancestries inhabiting estuaries or tidal creeks on a seasonal basis. Here, we describe osmoregulation in the atyid Halocaridina rubra, an endemic Hawaiian shrimp of freshwater ancestry from the islands' anchialine ecosystem (coastal ponds with subsurface freshwater and seawater connections) that encounters near-continuous spatial and temporal salinity changes. Given this, survival and osmoregulatory responses were examined over a wide salinity range. In the laboratory, H. rubra tolerated salinities of ~0-56‰, acting as both a hyper- and hypo-osmoregulator and maintaining a maximum osmotic gradient of ~868 mOsm kg(-1) H2O in freshwater. Furthermore, hemolymph osmolality was more stable during salinity transfers relative to other crustaceans. Silver nitrate and vital mitochondria-rich cell staining suggest all gills are osmoregulatory, with a large proportion of each individual gill functioning in ion transport (including when H. rubra acts as an osmoconformer in seawater). Additionally, expression of ion transporters and supporting enzymes that typically undergo upregulation during salinity transfer in osmoregulatory gills (i.e. Na(+)/K(+)-ATPase, carbonic anhydrase, Na(+)/K(+)/2Cl(-) cotransporter, V-type H(+)-ATPase and arginine kinase) were generally unaltered in H. rubra during similar transfers. These results suggest H. rubra (and possibly other anchialine species) maintains high, constitutive levels of gene expression and ion transport capability in the gills as a means of potentially coping with the fluctuating salinities that are encountered in anchialine habitats. Thus, anchialine taxa represent an interesting avenue for future physiological research.


Asunto(s)
Decápodos/fisiología , Osmorregulación , Salinidad , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proliferación Celular , Decápodos/química , Decápodos/genética , Regulación de la Expresión Génica , Hawaii , Hemolinfa/química , Transporte Iónico , Mitocondrias/fisiología , Datos de Secuencia Molecular , Concentración Osmolar , Análisis de Secuencia de ADN
13.
J Hered ; 105(1): 1-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24336862

RESUMEN

Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.


Asunto(s)
Genoma , Genómica/métodos , Invertebrados/clasificación , Invertebrados/genética , Animales , Evolución Biológica , Organizaciones , Filogenia
14.
Artículo en Inglés | MEDLINE | ID: mdl-25193179

RESUMEN

Crustaceans generally act as oxy-regulators, maintaining constant oxygen uptake as oxygen partial pressures decrease, but when a critical low level is reached, ventilation and aerobic metabolism shut down. Cave-adapted animals, including crustaceans, often show a reduced metabolic rate possibly owing in part to the hypoxic nature of such environments. However, metabolic rates have not been thoroughly explored in crustaceans from anchialine habitats (coastal ponds and caves), which can experience variable oxygenic regimes. Here, an atypical oxy-conforming pattern of oxygen uptake is reported in the Hawaiian anchialine atyid Halocaridina rubra, along with other unusual metabolic characteristics. Ventilatory rates are near-maximal in normoxia and did not increase appreciably as PO2 declined, resulting in a decline in VO2 during progressive hypoxia. Halocaridina rubra maintained in anoxic waters survived for seven days (the duration of the experiment) with no measureable oxygen uptake, suggesting a reliance on anaerobic metabolism. Supporting this, lactate dehydrogenase activity was high, even in normoxia, and oxygen debts were quickly repaid by an unusually extreme increase in oxygen uptake upon exposure to normoxia. In contrast, four related anchialine shrimp species from the Ryukyu Islands, Japan, exhibited physiological properties consistent with previously studied crustaceans. The unusual respiratory patterns found in H. rubra are discussed in the context of a trade-off in gill morphology for osmoregulatory ion transport vs. diffusion of respiratory gasses. Future focus on anchialine species may offer novel insight into the diversity of metabolic responses to hypoxia and other physiological challenges experienced by crustaceans.


Asunto(s)
Alostasis , Decápodos/fisiología , Metabolismo Energético , Modelos Biológicos , Consumo de Oxígeno , Estrés Fisiológico , Animales , Cuevas , Decápodos/enzimología , Hawaii , Hipoxia , Japón , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Osmorregulación , Filogenia , Estanques , Mucosa Respiratoria/fisiología , Frecuencia Respiratoria , Especificidad de la Especie , Análisis de Supervivencia , Regulación hacia Arriba
15.
Mol Ecol ; 22(17): 4499-515, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23980764

RESUMEN

The Aiptasia-Symbiodinium symbiosis is a promising model for experimental studies of cnidarian-dinoflagellate associations, yet relatively little is known regarding the genetic diversity of either symbiotic partner. To address this, we collected Aiptasia from 16 localities throughout the world and examined the genetic diversity of both anemones and their endosymbionts. Based on newly developed SCAR markers, Aiptasia consisted of two genetically distinct populations: one Aiptasia lineage from Florida and a second network of Aiptasia genotypes found at other localities. These populations did not conform to the distributions of described Aiptasia species, suggesting that taxonomic re-evaluation is needed in the light of molecular genetics. Associations with Symbiodinium further demonstrated the distinctions among Aiptasia populations. According to 18S RFLP, ITS2-DGGE and microsatellite flanker region sequencing, Florida anemones engaged in diverse symbioses predominantly with members of Symbiodinium Clades A and B, but also C, whereas anemones from elsewhere harboured only S. minutum within Clade B. Symbiodinium minutum apparently does not form a stable symbiosis with other hosts, which implies a highly specific symbiosis. Fine-scale differences among S. minutum populations were quantified using six microsatellite loci. Populations of S. minutum had low genotypic diversity and high clonality (R = 0.14). Furthermore, minimal population structure was observed among regions and ocean basins, due to allele and genotype sharing. The lack of genetic structure and low genotypic diversity suggest recent vectoring of Aiptasia and S. minutum across localities. This first ever molecular-genetic study of a globally distributed cnidarian and its Symbiodinium assemblages reveals host-symbiont specificity and widely distributed populations in an important model system.


Asunto(s)
Dinoflagelados/genética , Genética de Población , Anémonas de Mar/genética , Simbiosis , Animales , Teorema de Bayes , Arrecifes de Coral , ADN Espaciador Ribosómico/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Florida , Marcadores Genéticos , Variación Genética , Genotipo , Funciones de Verosimilitud , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 18S/genética
16.
PeerJ ; 11: e15023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151292

RESUMEN

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Asunto(s)
Arrecifes de Coral , Dinoflagelados , Variación Genética , Dinoflagelados/clasificación , Dinoflagelados/genética , Filogenia , Consenso , Antozoos , Simbiosis
18.
Viruses ; 14(9)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146841

RESUMEN

Arboviruses continue to threaten a significant portion of the human population, and a better understanding is needed of the determinants of successful arbovirus infection of arthropod vectors. Avoiding apoptosis has been shown to be one such determinant. Previous work showed that a Sindbis virus (SINV) construct called MRE/rpr that expresses the Drosophila pro-apoptotic protein Reaper via a duplicated subgenomic promoter had a reduced ability to orally infect Aedes aegypti mosquitoes at 3 days post-blood meal (PBM), but this difference diminished over time as virus variants containing deletions in the inserted reaper gene rapidly predominated. In order to further clarify the effect of midgut apoptosis on disseminated infection in Ae. aegypti, we constructed MRE/rprORF, a version of SINV containing reaper inserted into the structural open reading frame (ORF) as an in-frame fusion. MRE/rprORF successfully expressed Reaper, replicated similarly to MRE/rpr in cell lines, induced apoptosis in cultured cells, and caused increased effector caspase activity in mosquito midgut tissue. Mosquitoes that fed on blood containing MRE/rprORF developed significantly less midgut and disseminated infection when compared to MRE/rpr or a control virus up to at least 7 days PBM, when less than 50% of mosquitoes that ingested MRE/rprORF had detectable disseminated infection, compared with around 80% or more of mosquitoes fed with MRE/rpr or control virus. However, virus titer in the minority of mosquitoes that became infected with MRE/rprORF was not significantly different from control virus. Deep sequencing of virus populations from ten mosquitoes infected with MRE/rprORF indicated that the reaper insert was stable, with only a small number of point mutations and no deletions being observed at frequencies greater than 1%. Our results indicate that expression of Reaper by this method significantly reduces infection prevalence, but if infection is established then Reaper expression has limited ability to continue to suppress replication.


Asunto(s)
Aedes , Virus Sindbis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasas Efectoras/genética , Humanos , Mosquitos Vectores , Sistemas de Lectura Abierta , Virus Sindbis/genética
19.
Integr Comp Biol ; 62(2): 275-287, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35687002

RESUMEN

When new land is created, initial microbial colonization lays the foundation for further ecological succession of plant and animal communities. Primary microbial succession of new aquatic habitats formed during volcanic activity has received little attention. The anchialine ecosystem, which includes coastal ponds in young lava flows, offers an opportunity to examine this process. Here, we characterized microbial communities of anchialine habitats in Hawaii that were created during volcanic eruptions in 2018. Benthic samples from three habitats were collected ∼2 years after their formation and at later time points spanning ∼1 year. Sequence profiling (16S and 18S) of prokaryotic and eukaryotic communities was used to test whether communities were similar to those from older, established anchialine habitats, and if community structure changed over time. Results show that microbial communities from the new habitats were unlike any from established anchialine microbial communities, having higher proportions of Planctomycetota and Chloroflexi but lower proportions of green algae. Each new habitat also harbored its own unique community relative to other habitats. While community composition in each habitat underwent statistically significant changes over time, they remained distinctive from established anchialine habitats. New habitats also had highly elevated temperatures compared to other habitats. These results suggest that idiosyncratic microbial consortia form during early succession of Hawaiian anchialine habitats. Future monitoring will reveal whether the early communities described here remain stable after temperatures decline and macro-organisms become more abundant, or if microbial communities will continue to change and eventually resemble those of established habitats. This work is a key first step in examining primary volcanic succession in aquatic habitats and suggests young anchialine habitats may warrant special conservation status.


Asunto(s)
Ecosistema , Microbiota , Animales , Hawaii , Plantas
20.
J Hered ; 102(1): 47-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20881031

RESUMEN

Members of the family Carangidae are top-level predators and highly prized food and sport fishes. Although ecologically and economically important, little is known about the biology of numerous species in the family. This is particularly true of the jacks Caranx ignobilis and C. melampygus, which have experienced recent population reductions around the high Hawaiian Islands due to overfishing. Previous studies have documented territorial tendencies as well as cases of long-distance excursions in both species, suggesting populations may exhibit a range of structure at the genetic level. To explore this possibility, mitochondrial DNA ATPase6 and ATPase8 gene sequence variation was assessed from 91 individuals (33 C. ignobilis and 58 C. melampygus) spanning the islands of Kaua'i, O'ahu, Moloka'i, Maui, and Hawai'i. Although a total of 20 distinct haplotypes (8 for C. ignobilis; 12 for C. melampygus) were recovered, no evidence of population structure was found for either species across the examined geographic range. However, distinct demographic patterns were identified, implying differing evolutionary histories and/or population dynamics. Additionally, ∼ 6% of the examined C. ignobilis were C. ignobilis × C. melampygus hybrids because they harbored mitochondrial haplotypes typical of C. melampygus. These hybrids contribute to measurable gene flow between the species and may play a significant role in the evolution of the genus.


Asunto(s)
Flujo Génico , Genética de Población , Haplotipos , Perciformes/genética , Filogeografía , Adenosina Trifosfatasas/genética , Animales , ADN Mitocondrial/genética , Evolución Molecular , Variación Genética , Hawaii , Hibridación Genética , Dinámica Poblacional , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA