RESUMEN
Astrocyte proliferation and migration toward injured Central Nervous System (CNS) areas are key features of astrogliosis and glial scar formation. Even though it is known that intracellular and environmental Reactive Oxygen and Nitrogen Species (RONS) affect astrocyte behaviour in physiological and pathophysiological conditions, their effects on the migration and growth of astrocytes are still unclear. Plasma-technologies are emerging in medicine as a tool to generate RONS for treating cells directly or through Plasma Activated Liquid Media (PALM). In this paper, we show for the first time how the use of PALM can modulate both astrocyte growth and migration as a function of active species produced by plasma in liquids. Our results show that PALM, generated by means of cold atmospheric pressure plasmas fed with N2, air or O2, can modulate astrocyte behaviour depending on the content of hydrogen peroxide and nitrite in the liquid. In particular, H2O2 enriched PALM induced a negative effect on cell growth associated with the mild wound healing improvement of primary astrocytes, in a scratch assay. Nitrite enriched PALM induced a selective effect on the wound healing without affecting cell growth. PALM containing a more balanced level of H2O2 and NO2- were able to affect cell growth, as well as significantly ameliorate wound healing. None of the PALM investigated induced upregulation of the gliotic inflammatory marker glial fibrillary acidic protein (GFAP), or of the astrocyte markers Aquaporin-4 (AQP4) and Connexin-43 (Cx-43) analysed by Western blot. Finally, immunofluorescence analysis revealed the presence of NO2- able to induce elongated protrusions at the front end of wounded astrocytes in the direction of cell migration. With our study we believe to have shown that PALM offer a novel tool to modulate astrocyte behaviour and that they are promising candidates for controlling astrogliosis in the case of CNS injuries.
Asunto(s)
Astrocitos/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas/fisiología , Animales , Acuaporina 4/metabolismo , Astrocitos/fisiología , Células Cultivadas , Conexina 43/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Peróxido de Hidrógeno/metabolismo , Ratas , Ratas WistarRESUMEN
Water solutions treated by cold atmospheric plasmas (CAPs) currently stand out in the field of cancer treatment as sources of exogenous blends of reactive oxygen and nitrogen species (RONS). It is well known that the balance of RONS inside both eukaryotic and prokaryotic cells is directly involved in physiological as well as pathological pathways. Also, organic molecules including phenols could exert promising anticancer effects, mostly attributed to their pro-oxidant ability in vitro and in vivo to generate RONS like O2-, H2O2, and a mixture of potentially cytotoxic compounds. By our vision of combining the efficacy of plasma-produced RONS and the use of organic molecules, we could synergistically attack cancer cells; yet, so far, this combination, to the best of our knowledge, has been completely unexplored. In this study, l-tyrosine, an amino acid with a phenolic side chain, is added to a physiological solution, often used in clinical practice (SIII) to be exposed to plasma. The efficacy of the gas plasma-oxidized SIII solution, containing tyrosine, was evaluated on four cancer cell lines selected from among tumors with poor prognosis (SHSY-5Y, MCF-7, HT-29, and SW-480). The aim was to induce tumor toxicity and trigger apoptosis pathways. The results clearly indicate that the plasma-treated water solution (PTWS) reduced cell viability and oxygen uptake due to an increase in intracellular ROS levels and activation of apoptosis pathways in all investigated cancer cells, which may be related to the activation of the mitochondrial-mediated and p-JNK/caspase-3 signaling pathways. This research offers improved knowledge about the physiological mechanisms underlying cancer treatment and a valid method to set up a prompt, adequate, and effective cancer treatment in the clinic.
RESUMEN
The behavior of cells in terms of cell-substrate and cell-cell interaction is dramatically affected by topographical characteristics as shape, height, and distance, encountered in their physiological environment. The combination of chemistry and topography of a biomaterial surface influences in turns, important biological responses as inflammatory events at tissue-implant interface, angiogenesis, and differentiation of cells. By disentangling the effect of material chemistry from the topographical one, the possibility of controlling the cell behavior can be provided. In this paper, surfaces with different roughness and morphology were produced by radiofrequency (RF, 13.56 MHz) glow discharges, fed with hexafluoropropylene oxide (C(3)F(6)O), in a single process. Coatings with different micro/nanopatterns and the same uppermost chemical composition were produced by combining two plasma deposition processes, with C(3)F(6)O and tetrafluoroethylene (C(2)F(4)), respectively. The behavior of osteoblast-like cells toward these substrates clearly shows a strict dependence of cell adhesion and proliferation on surface roughness and morphology.
Asunto(s)
Materiales Biocompatibles Revestidos/química , Polímeros de Fluorocarbono/química , Nanoestructuras/química , Osteoblastos/química , Tereftalatos Polietilenos/química , Células Cultivadas , Humanos , Membranas Artificiales , Osteoblastos/citología , Osteoblastos/fisiología , Tamaño de la Partícula , Propiedades de Superficie , HumectabilidadRESUMEN
Plasma Treated Water Solutions (PTWS) recently emerged as a novel tool for the generation of Reactive Oxygen and Nitrogen Species (ROS and RNS) in liquids. The presence of ROS with a strong oxidative power, like hydrogen peroxide (H2O2), has been proposed as the main effector for the cancer-killing properties of PTWS. A protective role has been postulated for RNS, with nitric oxide (NO) being involved in the activation of antioxidant responses and cell survival. However, recent evidences proved that NO-derivatives in proper mixtures with ROS in PTWS could enhance rather than reduce the selectivity of PTWS-induced cancer cell death through the inhibition of specific antioxidant cancer defenses. In this paper we discuss the formation of RNS in different liquids with a Dielectric Barrier Discharge (DBD), to show that NO is absent in PTWS of complex composition like plasma treated (PT)-cell culture media used for in vitro experiments, as well as its supposed protective role. Nitrite anions (NO2-) instead, present in our PTWS, were found to improve the selective death of Saos2 cancer cells compared to EA.hy926 cells by decreasing the cytotoxic threshold of H2O2 to non-toxic values for the endothelial cell line.
RESUMEN
Over the past decade, cold atmospheric plasmas have shown promising application in cancer therapy. The therapeutic use of plasma-activated media is a topic addressed in an emerging field known as plasma pharmacy. In oncology, plasma-activated media are used to harness the therapeutic effects of oxidant species when they come in contact with cancer cells. Among several factors that contribute to the anticancer effect of plasma-activated liquid media (PALM), H2O2 and NO derivatives likely play a key role in the apoptotic pathway. Despite the significant amount of literature produced in recent years, a full understanding of the mechanisms by which PALM exert their activity against cancer cells is limited. In this paper, a sealed dielectric-barrier discharge was used to disentangle the effect of reactive nitrogen species (RNS) from that of reactive oxygen species (ROS) on cancer cells. Two cancers characterized by poor prognosis have been investigated: metastatic melanoma and pancreatic cancer. Both tumour models exposed to PALM rich in H2O2 showed a reduction in proliferation and an increase in calreticulin exposure and ATP release, suggesting the potential use of activated media as an inducer of immunogenic cell death via activation of the innate immune system.
Asunto(s)
Medios de Cultivo/farmacología , Melanoma/inmunología , Neoplasias Pancreáticas/inmunología , Gases em Plasma/farmacología , Calreticulina/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Electricidad , Humanos , Peróxido de Hidrógeno/análisis , Nitritos/análisis , Procesamiento de Señales Asistido por ComputadorRESUMEN
Cell colonization of the surrounding environment is a very significant process in both physiological and pathological events. In order to understand the tissue regeneration process and thereby provide guidance principles for designing new biomaterials, it is of paramount importance to study the cell colonization in the presence of physical, chemical, and biological cues. Flat "gradient" materials are generally used with this purpose. Three dimensional gradient scaffolds mimicking more precisely the situation in vivo are somewhat more complex to fabricate and characterize. Scaffolds for Tissue Engineering (TE) made of hydrophobic synthetic polymers do not allow good cell colonization: far from their periphery, in fact, internal cell colonization is usually low. In this research poly-ε caprolactone (PCL) scaffolds have been "decorated" with chemical gradients both on top and along their thickness by means of cold plasma processes, in order to improve cell colonization of their core. Plasma treatments with a mixture of argon and oxygen (Ar/O2), as well as plasma deposition of differently cross-linked poly(ethylene oxide) (PEO)-like coatings, have been performed. This study establishes that cross-linked PEO-like domains interspaced with native PCL ones deposited only on top of the scaffold (i.e., coating that penetrates less than 300 µm inside the scaffold) are more effective in promoting cell colonization across the scaffolds than the other tested materials including superhydrophilic samples and that ones produced by tested double step approaches. Last but not least, one result of this research is that, in the case of plasma coatings with low deposition rates and porous materials with a low pore interconnectivity, it is possible to improve penetration of low pressure plasma active species inside the scaffold's core thorough a pretreatment of the porous materials (i.e., penetration up to 4500 mm far from topside).
RESUMEN
In order to improve the dispersion of multi-walled carbon nanotubes (MWCNTs) in aqueous media, their surface functionalization was carried out in O2-fed low-pressure plasmas. Differently from what can be found in the literature of this field, homogeneous functionalization was achieved by generating the plasma inside vials containing the nanotube powders properly stirred. Experimental parameters, such as input power, treatment time and pressure, were varied to investigate their influence on the process efficiency. A detailed characterization of the plasma treated nanotubes, dry and in aqueous suspension, was carried out with a multi-diagnostic analytical approach, to evaluate their surface chemical properties, morphology, structural integrity and stability in the colloidal state. The plasma grafting of polar ionizable (e.g. acid) groups has been proved to successfully limit the agglomeration of MWCNTs and to produce nanotubes suspensions that are stable for one month and more in water.
RESUMEN
Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors.
RESUMEN
In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS) and 3-aminopropyl-triethoxysilane (APTES). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the -SH or -NH2 were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.
RESUMEN
A photo-immobilisation procedure was utilised to create two different micro-patterned surfaces (tracks 25 and 5 microm wide) of hyaluronan (Hyal) on polyethylene-terephthalate (PET) previously plasma activated. Aim of the study was to investigate the proliferation and re-differentiation capacity of articular chondrocytes cultured on micro-patterned Hyal, compared to homogeneous Hyal and plain plasma-treated (pt-)PET substrates. Cytotoxicity, cell proliferation, activation and differentiation of articular knee cartilage chondrocytes (Mongrel sheep) were evaluated after 14 days of culture. It was found that micro-patterned Hyal surfaces induced the adhesion, migration and alignment of chondrocytes, as shown by light and scanning electron microscopy. Furthermore, the same surfaces induced chondrocyte differentiation, with a significant increase of aggrecan and collagen type II production, while homogeneous Hyal and pt-PET surfaces did not.
Asunto(s)
Materiales Biocompatibles/química , Condrocitos/citología , Condrocitos/efectos de los fármacos , Ácido Hialurónico/química , Luz , Tereftalatos Polietilenos/química , Agrecanos , Animales , Cartílago/patología , Cartílago Articular/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/patología , Colágeno Tipo II/química , Medios de Cultivo/farmacología , Proteínas de la Matriz Extracelular/química , Ácido Hialurónico/farmacología , Lectinas Tipo C/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Fenotipo , Proteoglicanos/química , Ovinos , Espectrometría por Rayos X , Propiedades de Superficie , Factores de Tiempo , Rayos Ultravioleta , Cicatrización de HeridasRESUMEN
Stainless steel surfaces were processed by means of plasma enhanced chemical vapor deposition (PE-CVD) fed with acrylic acid vapors in order to functionalize them with carboxyl groups, which were subsequently activated for covalent immobilization of heparin-loaded (HEP) NH(2) group-functionalized (Fun) nanoliposomes (NLs). Empty Fun or HEP non-functionalized (control) NLs were used as controls. NLs were characterized for mean diameter, surface charge and heparin encapsulation/release. Different lipid compositions were used for NL construction; PC/Chol (2:1mol/mol) or PC/Chol (4:1mol/mol) (fluid type vesicles) [which allow gradual release of heparin] and DSPC/Chol (2:1mol/mol) (rigid type vesicles). Surface haemocompatibility was tested by measuring blood clotting time. Platelet adhesion on surfaces was evaluated morphologically by SEM and CLSM. The haemocompatibility of plasma-processed surfaces was improved (compared to untreated surfaces); Fun-HEP NL-coated surfaces demonstrated highest coagulation times. For short surface/blood incubation periods, surfaces coated with Fun-HEP NLs consisting of PC/Chol (2:1) had higher coagulation times (compared to DSPC/Chol NLs) due to faster release of heparin. Heparin release rate from the various NL types and surface platelet adhesion results were in agreement with the corresponding blood coagulation times. Concluding, covalent immobilization of drug entrapping NLs on plasma processed surfaces is a potential method for preparation of controlled-rate drug-eluting metallic stents or devices.
Asunto(s)
Anticoagulantes/química , Heparina/química , Acero Inoxidable/química , Colesterol/química , Humanos , Liposomas , Metales , Tamaño de la Partícula , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Plasma/química , Adhesividad Plaquetaria , Polietilenglicoles/químicaRESUMEN
In designing new biomaterials, it is of outstanding importance to consider how cells respond to specific chemical and topographical features on the material surface. The behavior of most cell types in vivo is strictly related to specific chemical and topographical cues that characterize the extra cellular environment. In particular, during their lives cells react to topographical patterns such as those of the extracellular matrix (ECM), of micro and/or nanometric dimensions. The production of micrometric and/or nanometric features on artificial materials usually involves expensive and time-consuming methods of manufacturing, such as electron beam and colloidal lithography. In this article, different "Teflon-like" structured surfaces were deposited from tetrafluoroethylene (C(2)F(4))-fed plasmas, for the study of cell adhesion and growth. The reaction of different cell lines to different topographical features was evaluated and compared with cell behavior on flat samples with the same chemical composition. Cell adhesion was calculated from area covered by cells at different time of culture. Beside this, cell proliferation was determined with the MTT test. Cell morphology and filopodia interaction with the nanofeatures were also estimated by optical and scanning electron microscopy. A dramatic difference both in adhesion and growth was found between cells seeded on flat and rough surfaces with the density and spreading of adhered cells varying as a function of the roughness of coatings.