RESUMEN
Hijacking the ubiquitin proteasome system to elicit targeted protein degradation (TPD) has emerged as a promising therapeutic strategy to target and destroy intracellular proteins at the post-translational level. Small molecule-based TPD approaches, such as proteolysis-targeting chimeras (PROTACs) and molecular glues, have shown potential, with several agents currently in clinical trials. Biological PROTACs (bioPROTACs), which are engineered fusion proteins comprised of a target-binding domain and an E3 ubiquitin ligase, have emerged as a complementary approach for TPD. Here, we describe a new method for the evolution and design of bioPROTACs. Specifically, engineered binding scaffolds based on the third fibronectin type III domain of human tenascin-C (Tn3) were installed into the E3 ligase tripartite motif containing-21 (TRIM21) to redirect its degradation specificity. This was achieved via selection of naïve yeast-displayed Tn3 libraries against two different oncogenic proteins associated with B-cell lymphomas, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) and embryonic ectoderm development protein (EED), and replacing the native substrate-binding domain of TRIM21 with our evolved Tn3 domains. The resulting TRIM21-Tn3 fusion proteins retained the binding properties of the Tn3 as well as the E3 ligase activity of TRIM21. Moreover, we demonstrated that TRIM21-Tn3 fusion proteins efficiently degraded their respective target proteins through the ubiquitin proteasome system in cellular models. We explored the effects of binding domain avidity and E3 ligase utilization to gain insight into the requirements for effective bioPROTAC design. Overall, this study presents a versatile engineering approach that could be used to design and engineer TRIM21-based bioPROTACs against therapeutic targets.
Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Ubiquitinación , Ubiquitina/metabolismoRESUMEN
Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.
Asunto(s)
Interleucina-2 , Proteínas Recombinantes de Fusión , Interleucina-2/inmunología , Animales , Ratones , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/administración & dosificación , Humanos , Ingeniería de Proteínas/métodos , Línea Celular Tumoral , Citocinas/metabolismo , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacosRESUMEN
The hydrophobically modified glycol chitosan (HGC) nanomicelle has received increasing attention as a promising platform for the delivery of chemotherapeutic drugs. To improve the tumor selectivity of HGC, here an avidin and biotin functionalization strategy was applied. The hydrodynamic diameter of the biotin-avidin-functionalized HGC (cy5.5-HGC-B4F) was observed to be 104.7 nm, and the surface charge was +3.1 mV. Confocal and structured illumination microscopy showed that at 0.1 mg/ml, cy5.5-HGC-B4F nanomicelles were distributed throughout the cytoplasm of MDA-MB-231 breast cancer cells after 2 h of exposure without significant cytotoxicity. To better understand the intracellular fate of the nanomicelles, entrapment studies were performed and demonstrated that some cy5.5-HGC-B4F nanomicelles were capable of escaping endocytic vesicles, likely via the proton sponge effect. Quantitative analysis of the movements of endosomes in living cells revealed that the addition of HGC greatly enhanced the motility of endosomal compartments, and the nanomicelles were transported by early and late endosomes from cell periphery to the perinuclear region. Our results validate the importance of using live-cell imaging to quantitatively assess the dynamics and mechanisms underlying the complex endocytic pathways of nanosized drug carriers.
Asunto(s)
Quitosano/química , Nanopartículas/química , Avidina/química , Biotina/química , Carbocianinas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Endocitosis , Endosomas/metabolismo , Humanos , Microscopía Fluorescente , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Tamaño de la PartículaRESUMEN
BACKGROUND: Ocular neovascularization is a hallmark of retinal diseases including neovascular age-related macular degeneration and diabetic retinopathy, two leading causes of blindness in adults. Neovascularization is driven by the interaction of soluble vascular endothelial growth factor (VEGF) ligands with transmembrane VEGF receptors (VEGFR), and inhibition of the VEGF pathway has shown tremendous clinical promise. However, anti-VEGF therapies require invasive intravitreal injections at frequent intervals and high doses, and many patients show incomplete responses to current drugs due to the lack of sustained VEGF signaling suppression. METHODS: We synthesized insights from structural biology with molecular engineering technologies to engineer an anti-VEGF antagonist protein. Starting from the clinically approved decoy receptor protein aflibercept, we strategically designed a yeast-displayed mutagenic library of variants and isolated clones with superior VEGF affinity compared to the clinical drug. Our lead engineered protein was expressed in the choroidal space of rat eyes via nonviral gene delivery. RESULTS: Using a structure-informed directed evolution approach, we identified multiple promising anti-VEGF antagonist proteins with improved target affinity. Improvements were primarily mediated through reduction in dissociation rate, and structurally significant convergent sequence mutations were identified. Nonviral gene transfer of our engineered antagonist protein demonstrated robust and durable expression in the choroid of treated rats one month post-injection. CONCLUSIONS: We engineered a novel anti-VEGF protein as a new weapon against retinal diseases and demonstrated safe and noninvasive ocular delivery in rats. Furthermore, our structure-guided design approach presents a general strategy for discovery of targeted protein drugs for a vast array of applications.