Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Res Rep Health Eff Inst ; (196): 3-75, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-31872750

RESUMEN

Introduction: The Dorm Room Inhalation to Vehicle Emissions (DRIVE2) study was conducted to measure traditional single-pollutant and novel multipollutant traffic indicators along a complete emission-to-exposure pathway. The overarching goal of the study was to evaluate the suitability of these indicators for use as primary traffic exposure metrics in panel-based and small-cohort epidemiological studies. Methods: Intensive field sampling was conducted on the campus of the Georgia Institute of Technology (GIT) between September 2014 and January 2015 at 8 monitoring sites (2 indoors and 6 outdoors) ranging from 5 m to 2.3 km from the busiest and most congested highway artery in Atlanta. In addition, 54 GIT students living in one of two dormitories either near (20 m) or far (1.4 km) from the highway were recruited to conduct personal exposure sampling and weekly biomonitoring. The pollutants measured were selected to provide information about the heterogeneous particulate and gaseous composition of primary traffic emissions, including the traditional traffic-related species (e.g., carbon monoxide [CO], nitrogen dioxide [NO2], nitric oxide [NO], fine particulate matter [PM2.5], and black carbon [BC]), and of secondary species (e.g., ozone [O3] and sulfate as well as organic carbon [OC], which is both primary and secondary) from traffic and other sources. Along with these pollutants, we also measured two multipollutant traffic indicators: integrated mobile source indicators (IMSIs) and fine particulate matter oxidative potential (FPMOP). IMSIs are derived from elemental carbon (EC), CO, and nitrogen oxide (NOx) concentrations, along with the fractions of these species emitted by gasoline and diesel vehicles, to construct integrated estimates of gasoline and diesel vehicle impacts. Our FPMOP indicator was based on an acellular assay involving the depletion of dithiothreitol (DTT), considering both water-soluble and insoluble components (referred to as FPMOPtotal-DTT). In addition, a limited assessment of 18 low-cost sensors was added to the study to supplement the four original aims. Results: Pollutant levels measured during the study showed a low impact by this highway hotspot source on its surrounding vicinity. These findings are broadly consistent with results from other studies throughout North America showing decreased relative contributions to urban air pollution from primary traffic emissions. We view these reductions as an indication of a changing near-road environment, facilitated by the effectiveness of mobile source emission controls. Many of the primary pollutant species, including NO, CO, and BC, decreased to near background levels by 20 to 30 m from the highway source. Patterns of correlation among the sites also varied by pollutant and time of day. NO2 exhibited spatial trends that differed from those of the other single-pollutant primary traffic indicators. We believe this was caused by kinetic limitations in the photochemical chemistry, associated with primary emission reductions, required to convert the NO-dominant primary NOx, emitted from automobiles, to NO2. This finding provides some indication of limitations in the use of NO2 as a primary traffic exposure indicator in panel-based health effect studies. Roadside monitoring of NO, CO, and BC tended to be more strongly correlated with sites, both near and far from the road, during morning rush hour periods and often weakly to moderately correlated during other time periods of the day. This pattern was likely associated with diurnal changes in mixing and chemistry and their impact on spatial heterogeneity across the campus. Among our candidate multipollutant primary traffic indicators, we report several key findings related to the use of oxidative potential (OP)-based indicators. Although earlier studies have reported elevated levels of FPMOP in direct exhaust emissions, we found that atmospheric processing further enhanced FPMOPtotal-DTT, likely associated with the oxidation of primary polycyclic aromatic hydrocarbons (PAHs) to quinones and hydroxyquinones and with the oxidization and water solubility of metals. This has important implications in terms both of the utility of FPMOPtotal-DTT as a marker for exhaust emissions and of the importance of atmospheric processing of particulate matter (PM) being tied to potential health outcomes. The results from the personal exposure monitoring also point to the complexity and diversity of the spatiotemporal variability patterns among the study monitoring sites and the importance of accounting for location and spatial mobility when estimating exposures in panel-based and small-cohort studies. This was most clearly demonstrated with the personal BC measurements, where ambient roadside monitoring was shown to be a poor surrogate for exposures to BC. Alternative surrogates, including ambient and indoor BC at the participants' respective dorms, were more strongly associated with personal BC, and knowledge of the participants' mean proximity to the highway was also shown to explain a substantial level of the variability in corresponding personal exposures to both BC and NO2. In addition, untargeted metabolomic indicators measured in plasma and saliva, which represent emerging methods for measuring exposure, were used to extract approximately 20,000 and 30,000 features from plasma and saliva, respectively. Using hydrophilic interaction liquid chromatography (HILIC) in the positive ion mode, we identified 221 plasma features that differed significantly between the two dorm cohorts. The bimodal distribution of these features in the HILIC column was highly idiosyncratic; one peak consisted of features with elevated intensities for participants living in the near dorm; the other consisted of features with elevated intensities for participants in the far dorm. Both peaks were characterized by relatively short retention times, indicative of the hydrophobicity of the identified features. The results from the metabolomics analyses provide a strong basis for continuing this work toward specific chemical validation of putative biomarkers of traffic-related pollution. Finally, the study had a supplemental aim of examining the performance of 18 low-cost CO, NO, NO2, O3, and PM2.5 pollutant sensors. These were colocated alongside the other study monitors and assessed for their ability to capture temporal trends observed by the reference monitoring instrumentation. Generally, we found the performance of the low-cost gas-phase sensors to be promising after extensive calibration; the uncalibrated measurements alone, however, would likely not have led to reliable results. The low-cost PM sensors we evaluated had poor accuracy, although PM sensor technology is evolving quickly and warrants future attention. Conclusions: An immediate implication of the changing near-road environment is that future studies aimed at characterizing hotspots related to mobile sources and their impacts on health will need to consider multiple approaches for characterizing spatial gradients and exposures. Specifically and most directly, the mobile source contributions to ambient concentrations of single-pollutant indicators of traffic exposure are not as distinguishable to the degree that they have been in the past. Collectively, the study suggests that characterizing exposures to traffic-related pollutants, which is already difficult, will become more difficult because of the reduction in traffic-related emissions. Additional multi-tiered approaches should be considered along with traditional measurements, including the use of alternative OP measures beyond those based on DTT assays, metabolomics, low-cost sensors, and air quality modeling.

2.
Res Rep Health Eff Inst ; (195): 1-93, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31883240

RESUMEN

INTRODUCTION: The United States and Western Europe have seen great improvements in air quality, presumably in response to various regulations curtailing emissions from the broad range of sources that have contributed to local, regional, and global pollution. Such regulations, and the ensuing controls, however, have not come without costs, which are estimated at tens of billions of dollars per year. These costs motivate accountability-related questions such as, to what extent do regulations lead to emissions changes? More important, to what degree have the regulations provided the expected human health benefits?Here, the impacts of specific regulations on both electricity generating unit (EGU) and on-road mobile sources are examined through the classical accountability process laid out in the 2003 Health Effects Institute report linking regulations to emissions to air quality to health effects, with a focus on the 1999-2013 period. This analysis centers on regulatory actions in the southeastern United States and their effects on health outcomes in the 5-county Atlanta metropolitan area. The regulations examined are largely driven by the 1990 Clean Air Act Amendments (C). This work investigates regulatory actions and controls promulgated on EGUs: the Acid Rain Program (ARP), the NOx Budget Trading Program (NBP), and the Clean Air Interstate Rule (CAIR) - and mobile sources: Tier 2 Gasoline Vehicle Standards and the 2007 Heavy Duty Diesel Rule. METHODS: Each step in the classic accountability process was addressed using one or more methods. Linking regulations to emissions was accomplished by identifying major federal regulations and the associated state regulations, along with analysis of individual facility emissions and control technologies and emissions modeling (e.g., using the U.S. Environmental Protection Agency's [U.S. EPA's] MOtor Vehicle Emissions Simulator [MOVES] mobile-source model). Regulators, including those from state environmental and transportation agencies, along with the public service commissions, play an important role in implementing federal rules and were involved along with other regional stakeholders in the study. We used trend analysis, air quality modeling, satellite data, and a ratio-of-ratios technique to investigate a critical current issue, a potential large bias in mobile-source oxides of nitrogen (NOx) emissions estimates.The second link, emissions-air quality relationships, was addressed using both empirical analyses as well as chemical transport modeling employing the Community Multiscale Air Quality (CMAQ) model. Kolmogorov-Zurbenko filtering accounting for day of the year was used to separate the air quality signal into long-term, seasonal, weekday-holiday, and short-term meteorological signals. Regression modeling was then used to link emissions and meteorology to ambient concentrations for each of the species examined (ozone [O3], particulate matter ≤ 2.5 µm in aerodynamic diameter [PM2.5], nitrogen dioxide [NO2], sulfur dioxide [SO2], carbon monoxide [CO], sulfate [SO4-2], nitrate [NO3-], ammonium [NH4+], organic carbon [OC], and elemental carbon [EC]). CMAQ modeling was likewise used to link emissions changes to air quality changes, as well as to further establish the relative roles of meteorology versus emissions change impacts on air quality trends. CMAQ and empirical modeling were used to investigate aerosol acidity trends, employing the ISORROPIA II thermodynamic equilibrium model to calculate pH based on aerosol composition. The relationships between emissions and meteorology were then used to construct estimated counterfactual air quality time series of daily pollutant concentrations that would have occurred in the absence of the regulations. Uncertainties in counterfactual air quality were captured by the construction of 5,000 pollutant time series using a Monte Carlo sampling technique, accounting for uncertainties in emissions and model parameters.Health impacts of the regulatory actions were assessed using data on cardiorespiratory emergency department (ED) visits, using patient-level data in the Atlanta area for the 1999-2013 period. Four outcome groups were chosen based on previous studies identifying associations with ambient air pollution: a combined respiratory disease (RD) category; the subgroup of RD presenting with asthma; a combined cardiovascular disease (CVD) category; and the subgroup of CVD presenting with congestive heart failure (CHF).Models were fit to estimate the joint effects of multiple pollutants on ED visits in a time-series framework, using Poisson generalized linear models accounting for overdispersion, with a priori model formulations for temporal and meteorological covariates and lag structures. Several parameterizations were considered for the joint-effects models, including different sets of pollutants and models with nonlinear pollutant terms and first-order interactions among pollutants. Use of different periods for parameter estimates was assessed, as associations between pollutant levels and ED visits varied over the study period. A 7-pollutant, nonlinear model with pollutant interaction terms was chosen as the baseline model and fitted using pollutant and outcome data from 1999-2005 before regulations might have substantially changed the toxicity of pollutant mixtures. In separate analyses, these models were fitted using pollutant and outcome data from the entire 1999-2013 study period. Daily counterfactual time series of pollutant concentrations were then input into the health models, and the differences between the observed and counterfactual concentrations were used to estimate the impacts of the regulations on daily counts of ED visits. To account for the uncertainty in both the estimation of the counterfactual time series of ambient pollutant levels and the estimation of the health model parameters, we simulated 5,000 sets of parameter estimates using a multivariate normal distribution based on the observed variance-covariance matrix, allowing for uncertainty at each step of the chain of accountability. Sensitivity tests were conducted to assess the robustness of the results. RESULTS: EGU NOx and SO2 emissions in the Southeast decreased by 82% and 83%, respectively, between 1999 and 2013, while mobile-source emissions controls led to estimated decreases in Atlanta-area pollutant emissions of between 61% and 93%, depending on pollutant. While EGU emissions were measured, mobile-source emissions were modeled. Our results are supportive of a potential high bias in mobile-source NOx and CO emissions estimates. Air quality benefits from regulatory actions have increased as programs have been fully implemented and have had varying impacts over different seasons. In a scenario that accounted for all emissions reductions across the period, observed Atlanta central monitoring site maximum daily 8-hour (MDA8h) O3 was estimated to have been reduced by controls in the summertime and increased in the wintertime, with a change in mean annual MDA8h O3 from 39.7 ppb (counterfactual) to 38.4 ppb (observed). PM2.5 reductions were observed year-round, with average 2013 values at 8.9 µg/m3 (observed) versus 19.1 µg/m3 (counterfactual). Empirical and CMAQ analyses found that long-term meteorological trends across the Southeast over the period examined played little role in the distribution of species concentrations, while emissions changes explained the decreases observed. Aerosol pH, which plays a key role in aerosol formation and dynamics and may have health implications, was typically very low (on the order of 1-2, but sometimes much lower), with little trend over time despite the stringent SO2 controls and SO42- reductions.Using health models fit from 1999-2005, emissions reductions from all selected pollution-control policies led to an estimated 55,794 cardiorespiratory disease ED visits prevented (i.e., fewer observed ED visits than would have been expected under counterfactual scenarios) - 52,717 RD visits, of which 38,038 were for asthma, and 3,057 CVD visits, of which 2,104 were for CHF - among the residents of the 5-county area over the 1999-2013 period, an area with approximately 3.5 million people in 2013. During the final two years of the study (2012-2013), when pollution-control policies were most fully implemented and the associated benefits realized, these policies were estimated to prevent 5.9% of the RD ED visits that would have occurred in the absence of the policies (95% interval estimate: -0.4% to 12.3%); 16.5% of the asthma ED visits (95% interval estimate: 7.5% to 25.1%); 2.3% of the CVD ED visits (95% interval estimate: -1.8% to 6.2%); and -.6% of the CHF ED visits (95% interval estimate: 26.3% to 10.4%). Estimates of ED visits prevented were generally lower when using health models fit for the entire 1999-2013 study period.Sensitivity analyses were conducted to show the impact of the choice of parameterization of the health models and to assess alternative definitions of the study area. When impacts were assessed for separate policy interventions, policies affecting emissions from EGUs, especially the ARP and the NBP, appeared to have had the greatest effect on prevention of RD and asthma ED visits. CONCLUSIONS: This study demonstrates the effectiveness of regulations on improving air quality and health in the southeastern United States. It also demonstrates the complexities of accountability assessments as uncertainties are introduced in each step of the classic accountability process. While accounting for uncertainties in emissions, air quality-emissions relationships, and health models does lead to relatively large uncertainties in the estimated outcomes due to specific regulations, overall the benefits of regulations have been substantial.

3.
Environ Health ; 11: 70, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22998927

RESUMEN

BACKGROUND: Emergency department (ED) visit and hospital admissions (HA) data have been an indispensible resource for assessing acute morbidity impacts of air pollution. ED visits and HAs are types of health care visits with similarities, but also potentially important differences. Little previous information is available regarding the impact of health care visit type on observed acute air pollution-health associations from studies conducted for the same location, time period, outcome definitions and model specifications. METHODS: As part of a broader study of air pollution and health in St. Louis, individual-level ED and HA data were obtained for a 6.5 year period for acute care hospitals in the eight Missouri counties of the St. Louis metropolitan area. Patient demographic characteristics and diagnostic code distributions were compared for four visit types including ED visits, HAs, HAs that came through the ED, and non-elective HAs. Time-series analyses of the relationship between daily ambient ozone and PM2.5 and selected cardiorespiratory outcomes were conducted for each visit type. RESULTS: Our results indicate that, compared with ED patients, HA patients tended to be older, had evidence of greater severity for some outcomes, and had a different mix of specific outcomes. Consideration of 'HA through ED' appeared to more effectively select acute visits than consideration of 'non-elective HA'. While outcomes with the strongest observed temporal associations with air pollutants tended to show strong associations for all visit types, we found some differences in observed associations for ED visits and HAs. For example, risk ratios for the respiratory disease-ozone association were 1.020 for ED visits and 1.004 for 'HA through ED'; risk ratios for the asthma/wheeze-ozone association were 1.069 for ED visits and 1.106 for 'HA through ED'. Several factors (e.g. age) were identified that may be responsible, in part, for the differences in observed associations. CONCLUSIONS: Demographic and diagnostic differences between visit types may lead to preference for one visit type over another for some questions and populations. The strengths of observed associations with air pollutants sometimes varied between different health care visit types, but the relative strengths of association generally were specific to the pollutant-outcome combination.


Asunto(s)
Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Servicio de Urgencia en Hospital/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Enfermedades Respiratorias/epidemiología , Adolescente , Adulto , Anciano , Contaminantes Atmosféricos/toxicidad , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Ozono/toxicidad , Material Particulado/toxicidad , Factores de Tiempo , Adulto Joven
4.
J Expo Sci Environ Epidemiol ; 30(4): 680-688, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31745179

RESUMEN

INTRODUCTION: There have been no time-series studies of air pollution in Peru. Here we evaluate the effect of ambient PM2.5 on emergency room (ER) visits in Lima. METHODS: We estimated daily PM2.5 levels at a 1 km2 resolution during 2010-2016 using ground measurements, satellite data, and chemical transport model simulations. Population-weighted average daily PM2.5 levels were calculated for each district in Lima (n = 40), and assigned to patients based on residence. ER visits for respiratory and circulatory diseases were gathered from nine large public hospitals. Poisson regression was used to estimate the rate ratio for daily ER visits with change in daily PM2.5, controlling for meteorology, time trends, and district. RESULTS: For each interquartile range (IQR) increase in PM2.5, respiratory disease ER visits increased 4% (95% CI: 0-5%), stroke visits 10% (3-18%), and ischemic heart disease visits (adults, 18-64 years) 11% (-1, 24%). Districts with higher poverty showed significantly stronger associations of PM2.5 and respiratory disease ER visits than districts with lower poverty. Effects were diminished 24-42% using Lima-wide instead of district-specific PM2.5 levels. CONCLUSIONS: Short-term exposure to ambient PM2.5 is associated with increases in ER visits in Lima for respiratory diseases and stroke, and among middle-aged adults, ischemic heart disease.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Enfermedades Cardiovasculares/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Enfermedades Respiratorias/epidemiología , Adulto , Anciano , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Servicio de Urgencia en Hospital/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Masculino , Meteorología , Persona de Mediana Edad , Material Particulado/análisis , Perú/epidemiología , Pobreza , Accidente Cerebrovascular , Tiempo
5.
Occup Environ Med ; 63(10): 700-6, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16757505

RESUMEN

OBJECTIVES: Ambient particulate air pollution has been associated with increased risk of cardiovascular morbidity and mortality. Pathways by which particles may act involve autonomic nervous system dysfunction or inflammation, which can affect cardiac rate and rhythm. The importance of these pathways may vary by particle component or source. In an eastern US location with significant regional pollution, the authors examined the association of air pollution and odds of cardiac arrhythmia in older adults. METHODS: Thirty two non-smoking older adults were evaluated on a weekly basis for 24 weeks during the summer and autumn of 2000 with a standardised 30 minute protocol that included continuous electrocardiogram measurements. A central ambient monitoring station provided daily concentrations of fine particles (PM(2.5), sulfate, elemental carbon) and gases. Sulfate was used as a marker of regional pollution. The authors used logistic mixed effects regression to examine the odds of having any supraventricular ectopy (SVE) or ventricular ectopy (VE) in association with increases in air pollution for moving average pollutant concentrations up to 10 days before the health assessment. RESULTS: Participant specific mean counts of arrhythmia over the protocol varied between 0.1-363 for SVE and 0-350 for VE. The authors observed odds ratios for having SVE over the length of the protocol of 1.42 (95% CI 0.99 to 2.04), 1.70 (95% CI 1.12 to 2.57), and 1.78 (95% CI 0.95 to 3.35) for 10.0 microg/m3, 4.2 microg/m3, and 14.9 ppb increases in five day moving average PM2.5, sulfate, and ozone concentrations respectively. The other pollutants, including elemental carbon, showed no effect on arrhythmia. Participants reporting cardiovascular conditions (for example, previous myocardial infarction or hypertension) were the most susceptible to pollution induced SVE. The authors found no association of pollution with VE. CONCLUSION: Increased levels of ambient sulfate and ozone may increase the risk of supraventricular arrhythmia in the elderly.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Arritmias Cardíacas/epidemiología , Disfunción Ventricular/epidemiología , Anciano , Anciano de 80 o más Años , Contaminantes Atmosféricos/análisis , Arritmias Cardíacas/etiología , Carbono/análisis , Carbono/toxicidad , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/toxicidad , Ozono/análisis , Ozono/toxicidad , Dióxido de Azufre/análisis , Dióxido de Azufre/toxicidad , Disfunción Ventricular/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA