Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 288(15): 10722-35, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23457303

RESUMEN

Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sirtuina 1/metabolismo , Animales , Células Cultivadas , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glucosa/genética , Glucosa/metabolismo , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Insulina/genética , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirtuina 1/genética
2.
Mol Cell Biol ; 25(22): 9985-95, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16260612

RESUMEN

In addition to their role in cell cycle progression, new data reveal an emerging role of D-type cyclins in transcriptional regulation and cellular differentiation processes. Using 3T3-L1 cell lines to study adipogenesis, we observed an up-regulation of cyclin D3 expression throughout the differentiation process. Surprisingly, cyclin D3 was only minimally expressed during the initial stages of adipogenesis, when mitotic division is prevalent. This seemingly paradoxical expression led us to investigate a potential cell cycle-independent role for cyclin D3 during adipogenesis. We show here a direct interaction between cyclin D3 and the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma). Our experiments reveal cyclin D3 acts as a ligand-dependent PPARgamma coactivator, which, together with its cyclin-dependent kinase partner, phosphorylates the A-B domain of the nuclear receptor. Overexpression and knockdown studies with cyclin D3 had marked effects on PPARgamma activity and subsequently on adipogenesis. Chromatin immunoprecipitation assays confirm the participation of cyclin D3 in the regulation of PPARgamma target genes. We show that cyclin D3 mutant mice are protected from diet-induced obesity, display smaller adipocytes, have reduced adipogenic gene expression, and are insulin sensitive. Our results indicate that cyclin D3 is an important factor governing adipogenesis and obesity.


Asunto(s)
Adipocitos/citología , Ciclinas/fisiología , PPAR gamma/metabolismo , Adipocitos/metabolismo , Animales , Compuestos Azo/farmacología , Northern Blotting , Western Blotting , Células COS , Línea Celular , Chlorocebus aethiops , Inmunoprecipitación de Cromatina , Ciclina D3 , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Dieta , Regulación de la Expresión Génica , Inmunoprecipitación , Insulina/metabolismo , Ratones , Ratones Noqueados , Microscopía Fluorescente , Mutación , Células 3T3 NIH , Obesidad/metabolismo , Plásmidos/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Transcripción Genética , Regulación hacia Arriba
3.
J Clin Invest ; 122(1): 153-62, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22201683

RESUMEN

Rodent models of obesity induced by consuming high-fat diet (HFD) are characterized by inflammation both in peripheral tissues and in hypothalamic areas critical for energy homeostasis. Here we report that unlike inflammation in peripheral tissues, which develops as a consequence of obesity, hypothalamic inflammatory signaling was evident in both rats and mice within 1 to 3 days of HFD onset, prior to substantial weight gain. Furthermore, both reactive gliosis and markers suggestive of neuron injury were evident in the hypothalamic arcuate nucleus of rats and mice within the first week of HFD feeding. Although these responses temporarily subsided, suggesting that neuroprotective mechanisms may initially limit the damage, with continued HFD feeding, inflammation and gliosis returned permanently to the mediobasal hypothalamus. Consistent with these data in rodents, we found evidence of increased gliosis in the mediobasal hypothalamus of obese humans, as assessed by MRI. These findings collectively suggest that, in both humans and rodent models, obesity is associated with neuronal injury in a brain area crucial for body weight control.


Asunto(s)
Hipotálamo/patología , Obesidad/patología , Adolescente , Adulto , Animales , Secuencia de Bases , Citocinas/genética , Dieta Alta en Grasa/efectos adversos , Femenino , Gliosis/etiología , Gliosis/patología , Humanos , Hipotálamo/lesiones , Hipotálamo/metabolismo , Inflamación/etiología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , FN-kappa B/metabolismo , Neuronas/patología , Obesidad/genética , Obesidad/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Long-Evans , Transducción de Señal , Factores de Tiempo , Adulto Joven
4.
Endocrinology ; 152(2): 394-404, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21159853

RESUMEN

The brain has emerged as a target for the insulin-sensitizing effects of several hormonal and nutrient-related signals. The current studies were undertaken to investigate mechanisms whereby leptin lowers circulating blood glucose levels independently of insulin. After extending previous evidence that leptin infusion directly into the lateral cerebral ventricle ameliorates hyperglycemia in rats with streptozotocin-induced uncontrolled diabetes mellitus, we showed that the underlying mechanism is independent of changes of food intake, urinary glucose excretion, or recovery of pancreatic ß-cells. Instead, leptin action in the brain potently suppresses hepatic glucose production while increasing tissue glucose uptake despite persistent, severe insulin deficiency. This leptin action is distinct from its previously reported effect to increase insulin sensitivity in the liver and offers compelling evidence that the brain has the capacity to normalize diabetic hyperglycemia in the presence of sufficient amounts of central nervous system leptin.


Asunto(s)
Glucemia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Diabetes Mellitus Experimental , Hiperglucemia , Insulina/farmacología , Leptina/farmacología , Animales , Composición Corporal/efectos de los fármacos , Corticosterona/sangre , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucagón/sangre , Prueba de Tolerancia a la Glucosa , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Masculino , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Nat Med ; 17(5): 618-22, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21532596

RESUMEN

In adipose tissue, muscle, liver and macrophages, signaling by the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) is a determinant of insulin sensitivity and this receptor mediates the insulin-sensitizing effects of thiazolidinediones (TZDs). As PPAR-γ is also expressed in neurons, we generated mice with neuron-specific Pparg knockout (Pparg brain knockout (BKO)) to determine whether neuronal PPAR-γ signaling contributes to either weight gain or insulin sensitivity. During high-fat diet (HFD) feeding, food intake was reduced and energy expenditure increased in Pparg-BKO mice compared to Pparg(f/f) mice, resulting in reduced weight gain. Pparg-BKO mice also responded better to leptin administration than Pparg(f/f) mice. When treated with the TZD rosiglitazone, Pparg-BKO mice were resistant to rosiglitazone-induced hyperphagia and weight gain and, relative to rosiglitazone-treated Pparg(f/f) mice, experienced only a marginal improvement in glucose metabolism. Hyperinsulinemic euglycemic clamp studies showed that the increase in hepatic insulin sensitivity induced by rosiglitazone treatment during HFD feeding was completely abolished in Pparg-BKO mice, an effect associated with the failure of rosiglitazone to improve liver insulin receptor signal transduction. We conclude that excess weight gain induced by HFD feeding depends in part on the effect of neuronal PPAR-γ signaling to limit thermogenesis and increase food intake. Neuronal PPAR-γ signaling is also required for the hepatic insulin sensitizing effects of TZDs.


Asunto(s)
Resistencia a la Insulina/fisiología , Obesidad/etiología , PPAR gamma/fisiología , Tiazolidinedionas/farmacología , Anciano , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Humanos , Hipoglucemiantes/farmacología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Obesidad/fisiopatología , PPAR gamma/agonistas , PPAR gamma/deficiencia , PPAR gamma/genética , Rosiglitazona , Transducción de Señal , Aumento de Peso/efectos de los fármacos , Aumento de Peso/fisiología
6.
Nat Med ; 17(9): 1121-7, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21873987

RESUMEN

Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator-activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , PPAR gamma/metabolismo , Peroxisomas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteína Relacionada con Agouti/metabolismo , Anilidas/farmacología , Animales , Línea Celular , Ingestión de Alimentos/fisiología , Electrofisiología , Proteínas Fluorescentes Verdes , Hipotálamo/citología , Ratones , Ratones Obesos , Neuropéptido Y/metabolismo , PPAR gamma/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa , Proopiomelanocortina/metabolismo
7.
Diabetes ; 59(7): 1817-24, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20357365

RESUMEN

OBJECTIVE: The hormone fibroblast growth factor 21 (FGF21) exerts diverse, beneficial effects on energy balance and insulin sensitivity when administered systemically to rodents with diet-induced obesity (DIO). The current studies investigate whether central FGF21 treatment recapitulates these effects. RESEARCH DESIGN AND METHODS: After preliminary dose-finding studies, either saline vehicle or recombinant human FGF21 (0.4 microg/day) was infused continuously for 2 weeks into the lateral cerebral ventricle of male Wistar rats rendered obese by high-fat feeding. Study end points included measures of energy balance (body weight, body composition, food intake, energy expenditure, and circulating and hepatic lipids) and glucose metabolism (insulin tolerance test, euglycemic-hyperinsulinemic clamp, and hepatic expression of genes involved in glucose metabolism). RESULTS: Compared with vehicle, continuous intracerebroventricular infusion of FGF21 increased both food intake and energy expenditure in rats with DIO, such that neither body weight nor body composition was altered. Despite unchanged body fat content, rats treated with intracerebroventricular FGF21 displayed a robust increase of insulin sensitivity due to increased insulin-induced suppression of both hepatic glucose production and gluconeogenic gene expression, with no change of glucose utilization. CONCLUSIONS: FGF21 action in the brain increases hepatic insulin sensitivity and metabolic rate in rats with DIO. These findings identify the central nervous system as a potentially important target for the beneficial effects of FGF21 in the treatment of diabetes and obesity.


Asunto(s)
Encéfalo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/administración & dosificación , Resistencia a la Insulina , Insulina/metabolismo , Obesidad/metabolismo , Análisis de Varianza , Animales , Glucemia/metabolismo , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Ensayo de Inmunoadsorción Enzimática , Factores de Crecimiento de Fibroblastos/metabolismo , Masculino , Actividad Motora , Obesidad/tratamiento farmacológico , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Diabetes ; 59(7): 1626-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20424233

RESUMEN

OBJECTIVE: Depletion of body fat stores during uncontrolled, insulin-deficient diabetes (uDM) results in markedly reduced plasma leptin levels. This study investigated the role of leptin deficiency in the genesis of severe insulin resistance and related metabolic and neuroendocrine derangements induced by uDM. RESEARCH DESIGN AND METHODS: Adult male Wistar rats remained nondiabetic or were injected with the beta-cell toxin, streptozotocin (STZ) to induce uDM and subsequently underwent subcutaneous implantation of an osmotic minipump containing either vehicle or leptin at a dose (150 microg/kg/day) designed to replace leptin at nondiabetic plasma levels. To control for leptin effects on food intake, another group of STZ-injected animals were pair fed to the intake of those receiving leptin. Food intake, body weight, and blood glucose levels were measured daily, with body composition and indirect calorimetry performed on day 11, and an insulin tolerance test to measure insulin sensitivity performed on day 16. Plasma hormone and substrate levels, hepatic gluconeogenic gene expression, and measures of tissue insulin signal transduction were also measured. RESULTS: Physiologic leptin replacement prevented insulin resistance in uDM via a mechanism unrelated to changes in food intake or body weight. This effect was associated with reduced total body fat and hepatic triglyceride content, preservation of lean mass, and improved insulin signal transduction via the insulin receptor substrate-phosphatidylinositol-3-hydroxy kinase pathway in the liver, but not in skeletal muscle or adipose tissue. Although physiologic leptin replacement lowered blood glucose levels only slightly, it fully normalized elevated plasma glucagon and corticosterone levels and reversed the increased hepatic expression of gluconeogenic enzymes characteristic of rats with uDM. CONCLUSIONS: We conclude that leptin deficiency plays a key role in the pathogenesis of severe insulin resistance and related endocrine disorders in uDM. Treatment of diabetes in humans may benefit from correction of leptin deficiency as well as insulin deficiency.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Leptina/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Leptina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Endocrinology ; 150(2): 707-12, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18845632

RESUMEN

In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.


Asunto(s)
Metabolismo Energético/genética , Glucosa/metabolismo , Homeostasis/genética , Neuronas/metabolismo , PPAR gamma/genética , Animales , Vías Autónomas/metabolismo , Vías Autónomas/fisiología , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Homeostasis/fisiología , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA