Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 17(6): e1009583, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34125833

RESUMEN

Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación , Transporte de Proteínas , Subunidades Ribosómicas Pequeñas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Transcripción Genética
2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003727

RESUMEN

Atherosclerosis is the primary cause of cardiovascular disease. The development of plaque complications, such as calcification and neo-angiogenesis, strongly impacts plaque stability and is a good predictor of mortality in patients with atherosclerosis. Despite well-known risk factors of plaque complications, such as diabetes mellitus and chronic kidney disease, the mechanisms involved are not fully understood. We and others have identified that the concentration of circulating leucine-rich α-2 glycoprotein 1 (LRG1) was increased in diabetic and chronic kidney disease patients. Using apolipoprotein E knockout mice (ApoE-/-) (fed with Western diet) that developed advanced atherosclerosis and using human carotid endarterectomy, we showed that LRG1 accumulated into an atherosclerotic plaque, preferentially in calcified areas. We then investigated the possible origin of LRG1 and its functions on vascular cells and found that LRG1 expression was specifically enhanced in endothelial cells via inflammatory mediators and not in vascular smooth muscle cells (VSMC). Moreover, we identified that LRG1 was able to induce calcification and SMAD1/5-signaling pathways in VSMC. In conclusion, our results identified for the first time that LRG1 is a direct contributor to vascular calcification and suggest a role of this molecule in the development of plaque complications in patients with atherosclerosis.


Asunto(s)
Aterosclerosis , Insuficiencia Renal Crónica , Calcificación Vascular , Animales , Humanos , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Leucina/metabolismo , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo
3.
J Cell Sci ; 133(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32482794

RESUMEN

Arterial remodeling in hypertension and intimal hyperplasia involves inflammation and disrupted flow, both of which contribute to smooth muscle cell dedifferentiation and proliferation. In this context, our previous results identified phosphoinositide 3-kinase γ (PI3Kγ) as an essential factor in inflammatory processes of the arterial wall. Here, we identify for the first time a kinase-independent role of nonhematopoietic PI3Kγ in the vascular wall during intimal hyperplasia using PI3Kγ-deleted mice and mice expressing a kinase-dead version of the enzyme. Moreover, we found that the absence of PI3Kγ in vascular smooth muscle cells (VSMCs) leads to modulation of cell proliferation, associated with an increase in intracellular cAMP levels. Real-time analysis of cAMP dynamics revealed that PI3Kγ modulates the degradation of cAMP in primary VSMCs independently of its kinase activity through regulation of the enzyme phosphodiesterase 4. Importantly, the use of an N-terminal competing peptide of PI3Kγ blocked primary VSMC proliferation. These data provide evidence for a kinase-independent role of PI3Kγ in arterial remodeling and reveal novel strategies targeting the docking function of PI3Kγ for the treatment of cardiovascular diseases.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Animales , Arterias , Proliferación Celular , Ratones , Miocitos del Músculo Liso , Fosfatidilinositol 3-Quinasas/genética
4.
PLoS Genet ; 15(5): e1008157, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31136569

RESUMEN

Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.


Asunto(s)
Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Polimerasa I/genética , ADN Ribosómico/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Precursores del ARN/genética , ARN Ribosómico , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
5.
Front Pharmacol ; 10: 1276, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824304

RESUMEN

Inflammation is a well-known pathophysiological factor of atherosclerosis but its therapeutic targeting has long been ignored. However, recent advances in the understanding of the immune mechanisms implicated in atherosclerosis have unveiled several therapeutic targets currently undergoing clinical trials. These studies have also shed light on a dialogue between the immune compartment and vascular smooth muscle cells (VSMCs) that plays a critical role in atherosclerotic disease initiation, progression, and stabilization. Our review focuses on the link between cellular and soluble immune effectors and VSMC behavior at different phases of the pathology. Furthermore, we discuss the potential targeting of these interactions to efficiently prevent cardiovascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA