Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(13): 2661-2684, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811851

RESUMEN

The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.


Asunto(s)
Quinasa de la Caseína II , Cromatina , Proteína HMGA2 , Células Madre Hematopoyéticas , Ratones Noqueados , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Animales , Células Madre Hematopoyéticas/metabolismo , Ratones , Humanos , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Cromatina/metabolismo , Cromatina/genética , Factor de Necrosis Tumoral alfa/metabolismo , Hematopoyesis , Estrés Fisiológico , Fluorouracilo/farmacología , Regeneración , Fosforilación , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Ratones Endogámicos C57BL
2.
EMBO J ; 41(8): e109463, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35229328

RESUMEN

In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Médula Ósea , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células Madre Hematopoyéticas/fisiología , Histonas/metabolismo
3.
Rinsho Ketsueki ; 65(7): 702-708, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39098022

RESUMEN

Myelodysplastic syndrome (MDS) is a refractory cancer that arises from hematopoietic stem cells and predominantly affects elderly adults. In addition to driver gene mutations, which are also found in clonal hematopoiesis in healthy elderly people, systemic inflammation caused by infection or collagen disease has long been known as an extracellular factor in the pathogenesis of MDS. Wild-type HSCs have an "innate immune memory" that functions in response to infection and inflammatory stress, and my colleagues and I used an infection stress model to demonstrate that the innate immune response by the TLR-TRIF-PLK-ELF1 pathway is similarly critical in impairment of hematopoiesis and dysregulation of chromatin in MDS stem cells. This revealed that not only are MDS stem cells expanded by the TRAF6-NF-kB pathway, the innate immune response is also involved in generating MDS stem cells. In this review, I will present research findings related to "innate immune memory," one of the pathogenic mechanisms of blood cancer, and discuss future directions for basic pathological research and potential therapeutic development.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias Hematológicas , Mutación , Humanos , Neoplasias Hematológicas/genética , Transformación Celular Neoplásica/genética , Infecciones , Inmunidad Innata , Síndromes Mielodisplásicos/genética , Animales , Estrés Fisiológico
4.
Cancer Sci ; 114(7): 2821-2834, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36945113

RESUMEN

MicroRNAs (miRNAs) play a crucial role in regulating gene expression. MicroRNA expression levels fluctuate, and point mutations and methylation occur in cancer cells; however, to date, there have been no reports of carcinogenic point mutations in miRNAs. MicroRNA 142 (miR-142) is frequently mutated in patients with follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia (CLL), and acute myeloid leukemia/myelodysplastic syndrome (AML/MDS). To understand the role of miR-142 mutation in blood cancers, the CRISPR-Cas9 system was utilized to successfully generate miR-142-55A>G mutant knock-in (Ki) mice, simulating the most frequent mutation in patients with miR-142 mutated AML/MDS. Bone marrow cells from miR-142 mutant heterozygous Ki mice were transplanted, and we found that the miR-142 mutant/wild-type cells were sufficient for the development of CD8+ T-cell leukemia in mice post-transplantation. RNA-sequencing analysis in hematopoietic stem/progenitor cells and CD8+ T-cells revealed that miR-142-Ki/+ cells had increased expression of the mTORC1 activator, a potential target of wild-type miR-142-3p. Notably, the expression of genes involved in apoptosis, differentiation, and the inhibition of the Akt-mTOR pathway was suppressed in miR-142-55A>G heterozygous cells, indicating that these genes are repressed by the mutant miR-142-3p. Thus, in addition to the loss of function due to the halving of wild-type miR-142-3p alleles, mutated miR-142-3p gained the function to suppress the expression of distinct target genes, sufficient to cause leukemogenesis in mice.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Síndromes Mielodisplásicos , Animales , Ratones , Carcinogénesis , Linfocitos T CD8-positivos/metabolismo , Mutación con Ganancia de Función , Leucemia Mieloide Aguda/genética , MicroARNs/genética , MicroARNs/metabolismo , Síndromes Mielodisplásicos/genética
5.
FASEB J ; 36(7): e22345, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635715

RESUMEN

High mobility group nucleosome-binding protein 3 (HMGN3), a member of the HMGN family, modulates the structure of chromatin and regulates transcription through transcription factors. HMGN3 has been implicated in the development of various cancers; however, the underlying mechanisms remain unclear. We herein demonstrated that the high expression of HMGN3 correlated with the metastasis of liver fluke infection-induced cholangiocarcinoma (CCA) in patients in northeastern Thailand. The knockdown of HMGN3 in CCA cells significantly impaired the oncogenic properties of colony formation, migration, and invasion. HMGN3 inhibited the expression of and blocked the intracellular polarities of epithelial regulator genes, such as the CDH1/E-cadherin and TJAP1 genes in CCA cells. A chromatin immunoprecipitation sequencing analysis revealed that HMGN3 required the transcription factor SNAI2 to bind to and repress the expression of epithelial regulator genes, at least in part, due to histone deacetylases (HDACs), the pharmacological inhibition of which reactivated these epithelial regulators in CCA, leading to impairing the cell migration capacity. Therefore, the overexpression of HMGN3 represses the transcription of and blocks the polarities of epithelial regulators in CCA cells in a manner that is dependent on the SNAI2 gene and HDACs.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Regulación de la Expresión Génica , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Blood ; 136(1): 106-118, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32219445

RESUMEN

Mutations in JAK2, myeloproliferative leukemia virus (MPL), or calreticulin (CALR) occur in hematopoietic stem cells (HSCs) and are detected in more than 80% of patients with myeloproliferative neoplasms (MPNs). They are thought to play a driver role in MPN pathogenesis via autosomal activation of the JAK-STAT signaling cascade. Mutant CALR binds to MPL, activates downstream MPL signaling cascades, and induces essential thrombocythemia in mice. However, embryonic lethality of Calr-deficient mice precludes determination of a role for CALR in hematopoiesis. To clarify the role of CALR in normal hematopoiesis and MPN pathogenesis, we generated hematopoietic cell-specific Calr-deficient mice. CALR deficiency had little effect on the leukocyte count, hemoglobin levels, or platelet count in peripheral blood. However, Calr-deficient mice showed some hematopoietic properties of MPN, including decreased erythropoiesis and increased myeloid progenitor cells in the bone marrow and extramedullary hematopoiesis in the spleen. Transplantation experiments revealed that Calr haploinsufficiency promoted the self-renewal capacity of HSCs. We generated CALRdel52 mutant transgenic mice with Calr haploinsufficiency as a model that mimics human MPN patients and found that Calr haploinsufficiency restored the self-renewal capacity of HSCs damaged by CALR mutations. Only recipient mice transplanted with Lineage-Sca1+c-kit+ cells harboring both CALR mutation and Calr haploinsufficiency developed MPN in competitive conditions, showing that CALR haploinsufficiency was necessary for the onset of CALR-mutated MPNs.


Asunto(s)
Calreticulina/fisiología , Trastornos Mieloproliferativos/etiología , Células Madre/patología , Animales , Médula Ósea/patología , Calreticulina/deficiencia , Calreticulina/genética , Autorrenovación de las Células , Eritropoyesis , Genotipo , Hematopoyesis Extramedular , Células Madre Hematopoyéticas/patología , Ratones , Ratones Transgénicos , Trastornos Mieloproliferativos/patología , Células Madre Neoplásicas/patología , Eliminación de Secuencia , Transcriptoma
7.
Genesis ; 58(9): e23386, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32645254

RESUMEN

Random gene trapping is the application of insertional mutagenesis techniques that are conventionally used to inactivate protein-coding genes in mouse embryonic stem (ES) cells. Transcriptionally silent genes are not effectively targeted by conventional random gene trapping techniques, thus we herein developed an unbiased poly (A) trap (UPATrap) method using a Tol2 transposon, which preferentially integrated into active genes rather than silent genes in ES cells. To achieve efficient trapping at transcriptionally silent genes using random insertional mutagenesis in ES cells, we generated a new diphtheria toxin (DT)-mediated trapping vector, DTrap that removed cells, through the expression of DT that was induced by the promoter activity of the trapped genes, and selected trapped clones using the neomycin-resistance gene of the vector. We found that a double-DT, the dDT vector, dominantly induced the disruption of silent genes, but not active genes, and showed more stable integration in ES cells than the UPATrap vector. The dDT vector disrupted differentiated cell lineage genes, which were silent in ES cells, and labeled trapped clone cells by the expression of EGFP upon differentiation. Thus, the dDT vector provides a systematic approach to disrupt silent genes and examine the cellular functions of trapped genes in the differentiation of target cells and development.


Asunto(s)
Elementos Transponibles de ADN , Toxina Diftérica/genética , Marcación de Gen/métodos , Células Madre Embrionarias de Ratones/metabolismo , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Mutagénesis , Mutagénesis Insercional
8.
Haematologica ; 105(4): 905-913, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31171641

RESUMEN

Healthy bone marrow progenitors yield a co-ordinated balance of hematopoietic lineages. This balance shifts with aging toward enhanced granulopoiesis with diminished erythropoiesis and lymphopoiesis, changes which likely contribute to the development of bone marrow disorders in the elderly. In this study, RUNX3 was identified as a hematopoietic stem and progenitor cell factor whose levels decline with aging in humans and mice. This decline is exaggerated in hematopoietic stem and progenitor cells from subjects diagnosed with unexplained anemia of the elderly. Hematopoietic stem cells from elderly unexplained anemia patients had diminished erythroid but unaffected granulocytic colony forming potential. Knockdown studies revealed human hematopoietic stem and progenitor cells to be strongly influenced by RUNX3 levels, with modest deficiencies abrogating erythroid differentiation at multiple steps while retaining capacity for granulopoiesis. Transcriptome profiling indicated control by RUNX3 of key erythroid transcription factors, including KLF1 and GATA1 These findings thus implicate RUNX3 as a participant in hematopoietic stem and progenitor cell aging, and a key determinant of erythroid-myeloid lineage balance.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Animales , Diferenciación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Eritropoyesis , Humanos , Ratones
9.
Acta Haematol ; 143(2): 96-111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31401626

RESUMEN

The treatment of chronic myeloid leukaemia (CML) requires quantitative polymerase chain reaction (qPCR) to monitor BCR-ABL1 in International Scale (IS). Some normal subjects were found to harbour BCR-ABL1. We performed a systematic review on normal subjects harbouring BCR-ABL1. A literature search was done on July 16, 2017 using EBSCOhost Research Databases interface and Western Pacific Region Index Medicus. Two authors selected the studies, extracted the data, and evaluated the quality of studies using the modified Appraisal Tool for Cross-Sectional Studies independently. The outcomes were prevalence, level of BCR-ABL1IS, proportion, and time of progression to CML. The initial search returned 4,770 studies. Eleven studies, all having used convenient sampling, were included, with total of 1,360 subjects. Ten studies used qualitative PCR and one used qPCR (not IS). The mean prevalence of M-BCR was 5.9, 15.5, and 15.9% in cord blood/newborns/infants (CB/NB/I) (n = 170), children (n = 90), and adults (n = 454), respectively, while m-BCR was 15, 26.9, and 23.1% in CB/NB/I (n = 786), children (n = 67), and adults (n = 208), respectively. No study reported the proportion and time of progression to CML. Nine studies were graded as moderate quality, one study as poor quality, and one study as unacceptable. The result of the studies could neither be inferred to the general normal population nor compared. Follow-up data were scarce.


Asunto(s)
Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Enfermedad Aguda , Crisis Blástica/patología , Enfermedad Crónica , Bases de Datos Factuales , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Cromosoma Filadelfia
10.
Lab Invest ; 99(11): 1622-1635, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231131

RESUMEN

The involvement of Wnt signaling in human lung cancer remains unclear. This study investigated the role of Wnt11 in neuroendocrine (NE) differentiation, cell proliferation, and epithelial-to-mesenchymal transition (EMT) in human small-cell lung cancer (SCLC). Immunohistochemical staining of resected specimens showed that Wnt11 was expressed at higher levels in SCLCs than in non-SCLCs; 58.8% of SCLC, 5.2% of adenocarcinoma (ADC), and 23.5% of squamous cell carcinoma tissues stained positive for Wnt11. A positive relationship was observed between Achaete-scute complex homolog 1 (Ascl1) and Wnt11 expression in SCLC cell lines, and this was supported by transcriptome data from SCLC tissue. The expression of Wnt11 and some NE markers increased after the transfection of ASCL1 into the A549 ADC cell line. Knockdown of Ascl1 downregulated Wnt11 expression in SCLC cell lines. Ascl1 regulated Wnt11 expression via lysine H3K27 acetylation at the enhancer region of the WNT11 gene. Wnt11 controlled NE differentiation, cell proliferation, and E-cadherin expression under the regulation of Ascl1 in SCLC cell lines. The phosphorylation of AKT and p38 mitogen-activated protein kinase markedly increased after transfection of WNT11 into the SBC3 SCLC cell line, which suggests that Wnt11 promotes cell proliferation in SCLC cell lines. Ascl1 plays an important role in regulating the Wnt signaling pathway and is one of the driver molecules of Wnt11 in human SCLC. Ascl1 and Wnt11 may employ a cooperative mechanism to control the biology of SCLC. The present results indicate the therapeutic potential of targeting the Ascl1-Wnt11 signaling axis and support the clinical utility of Wnt11 as a biological marker in SCLC.


Asunto(s)
Antígenos CD/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cadherinas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Proteínas Wnt/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Antígenos CD/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Cadherinas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Histonas/metabolismo , Humanos , Imidas/farmacología , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Noqueados , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/patología , Quinolinas/farmacología , ARN Interferente Pequeño/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/genética , Vía de Señalización Wnt/efectos de los fármacos
11.
Blood ; 126(10): 1172-83, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26219303

RESUMEN

Recent genome sequencing revealed inactivating mutations in EZH2, which encodes an enzymatic component of polycomb-repressive complex 2 (PRC2), in patients with myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPNs), and MDS/MPN overlap disorders. We herein demonstrated that the hematopoietic-specific deletion of Ezh2 in mice induced heterogeneous hematopoietic malignancies. Myelodysplasia was detected in mice following the deletion of Ezh2, and resulted in the development of MDS and MDS/MPN. Thrombocytosis was induced by Ezh2 loss and sustained in some mice with myelodysplasia. Although less frequent, Ezh2 loss also induced T-cell acute lymphoblastic leukemia and the clonal expansion of B-1a B cells. Gene expression profiling showed that PRC2 target genes were derepressed upon the deletion of Ezh2 in hematopoietic stem and progenitor cells, but were largely repressed during the development of MDS and MDS/MPN. Chromatin immunoprecipitation-sequence analysis of trimethylation of histone H3 at lysine 27 (H3K27me3) revealed a compensatory function of Ezh1, another enzymatic component of PRC2, in this process. The deletion of Ezh1 alone did not cause dysplasia or any hematologic malignancies in mice, but abolished the repopulating capacity of hematopoietic stem cells when combined with Ezh2 loss. These results clearly demonstrated an essential role of Ezh1 in the pathogenesis of hematopoietic malignancies induced by Ezh2 insufficiency, and highlighted the differential functions of Ezh1 and Ezh2 in hematopoiesis.


Asunto(s)
Neoplasias Hematológicas/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Inmunoprecipitación de Cromatina , Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Hematológicas/genética , Ratones , Ratones Mutantes , Complejo Represivo Polycomb 2/genética , Transcriptoma
12.
Blood ; 125(2): 304-15, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25395421

RESUMEN

Acquired mutations of JAK2 and TET2 are frequent in myeloproliferative neoplasms (MPNs). We examined the individual and cooperative effects of these mutations on MPN development. Recipients of JAK2V617F cells developed primary myelofibrosis-like features; the addition of loss of TET2 worsened this JAK2V617F-induced disease, causing prolonged leukocytosis, splenomegaly, extramedullary hematopoiesis, and modestly shorter survival. Double-mutant (JAK2V617F plus loss of TET2) myeloid cells were more likely to be in a proliferative state than JAK2V617F single-mutant myeloid cells. In a serial competitive transplantation assay, JAK2V617F cells resulted in decreased chimerism in the second recipients, which did not develop MPNs. In marked contrast, cooperation between JAK2V617F and loss of TET2 developed and maintained MPNs in the second recipients by compensating for impaired hematopoietic stem cell (HSC) functioning. In-vitro sequential colony formation assays also supported the observation that JAK2V617F did not maintain HSC functioning over the long-term, but concurrent loss of TET2 mutation restored it. Transcriptional profiling revealed that loss of TET2 affected the expression of many HSC signature genes. We conclude that loss of TET2 has two different roles in MPNs: disease accelerator and disease initiator and sustainer in combination with JAK2V617F.


Asunto(s)
Proteínas de Unión al ADN/genética , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Proteínas Proto-Oncogénicas/genética , Animales , Dioxigenasas , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos
13.
Rinsho Ketsueki ; 58(10): 1809-1817, 2017.
Artículo en Japonés | MEDLINE | ID: mdl-28978819

RESUMEN

Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease characterized by impaired hematopoiesis and an increased risk of transformation to acute myeloid leukemia (AML). Epigenetic regulators, including TET2, DNMT3A and EZH2, are often mutated in patients with MDS. Recently, exome sequencing of blood cells from aged people without hematological malignancies have demonstrated the presence of clonal hematopoiesis with myeloid malignancies-associated mutations, such as TET2 and DNMT3A. Here, I will discuss the molecular mechanisms underlying the accumulation of epigenetic alterations and genetic mutations, including TET2, DNMT3A and EZH2, and how these promote the development of MDS and hematological malignancies in aged people with clonal hematopoiesis.


Asunto(s)
Epigénesis Genética , Síndromes Mielodisplásicos/genética , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Mutación
14.
Blood ; 123(21): 3336-43, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24735968

RESUMEN

Numerous studies have recently reported mutations involving multiple components of the messenger RNA (mRNA) splicing machinery in patients with myelodysplastic syndrome (MDS). SF3B1 is mutated in 70% to 85% of refractory anemia with ringed sideroblasts (RARS) patients and is highly associated with the presence of RARS, although the pathological role of SF3B1 mutations in MDS-RARS has not been elucidated yet. Here, we analyzed the function of pre-mRNA splicing factor Sf3b1 in hematopoiesis. Sf3b1(+/-) mice maintained almost normal hematopoiesis and did not develop hematological malignancies during a long observation period. However, Sf3b1(+/-) cells had a significantly impaired capacity to reconstitute hematopoiesis in a competitive setting and exhibited some enhancement of apoptosis, but they did not show any obvious defects in differentiation. Additional depletion of Sf3b1 with shRNA in Sf3b1(+/-) hematopoietic stem cells (HSCs) severely compromised their proliferative capacity both in vitro and in vivo. Finally, we unexpectedly found no changes in the frequencies of sideroblasts in either Sf3b1(+/-) erythroblasts or cultured Sf3b1(+/-) erythroblasts expressing shRNA against Sf3b1. Our findings indicate that the level of Sf3b1 expression is critical for the proliferative capacity of HSCs, but the haploinsufficiency for Sf3b1 is not sufficient to induce a RARS-like phenotype.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fosfoproteínas/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Anemia Refractaria/genética , Anemia Refractaria/patología , Animales , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Haploidia , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Precursores del ARN/genética , Empalme del ARN , Factores de Empalme de ARN , ARN Interferente Pequeño/genética
15.
Blood ; 121(17): 3434-46, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23471304

RESUMEN

RUNX1/AML1 mutations have been identified in myelodysplastic syndromes (MDSs). In a mouse bone marrow transplantation model, a RUNX1 mutant, D171N, was shown to collaborate with Evi1 in the development of MDSs; however, this is rare in humans. Using enforced expression in human CD34(+) cells, we showed that the D171N mutant, the most frequent target of mutation in the RUNX1 gene, had an increased self-renewal capacity, blocked differentiation, dysplasia in all 3 lineages, and tendency for immaturity, but no proliferation ability. BMI1 overexpression was observed in CD34(+) cells from the majority of MDS patients with RUNX1 mutations, but not in D171N-transduced human CD34(+) cells. Cotransduction of D171N and BMI1 demonstrated that BMI1 overexpression conferred proliferation ability to D171N-transduced cells in both human CD34(+) cells and a mouse bone marrow transplantation model. Stepwise transduction of D171N followed by BMI1 in human CD34(+) cells resulted in long-term proliferation with a retained CD34(+) cell fraction, which is quite similar to the phenotype in patients with higher-risk MDSs. Our results indicate that BMI1 overexpression is one of the second hit partner genes of RUNX1 mutations that contribute to the development of MDSs.


Asunto(s)
Transformación Celular Neoplásica/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Mutación/genética , Síndromes Mielodisplásicos/patología , Complejo Represivo Polycomb 1/metabolismo , Anciano , Animales , Antígenos CD34/metabolismo , Western Blotting , Trasplante de Médula Ósea , Diferenciación Celular , Proliferación Celular , Citometría de Flujo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fenotipo , Complejo Represivo Polycomb 1/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Rinsho Ketsueki ; 56(2): 111-8, 2015 Feb.
Artículo en Japonés | MEDLINE | ID: mdl-25765789

RESUMEN

Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease characterized by impaired hematopoiesis and an increased risk of transformation to acute myeloid leukemia. Various epigenetic regulators are mutated in MDS patients, indicating that accumulation of epigenetic alterations together with genetic alterations plays a crucial role in the development of MDS.


Asunto(s)
Epigénesis Genética/genética , Epigenómica , Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Humanos , Mutación/genética , Síndromes Mielodisplásicos/diagnóstico
17.
Rinsho Ketsueki ; 56(11): 2287-94, 2015 Nov.
Artículo en Japonés | MEDLINE | ID: mdl-26666714

RESUMEN

Recent genome studies have identified recurrent somatic mutations in various myeloid malignancies, including acute myeloid leukemia, myelodysplastic syndrome and myeloproliferative neoplasm. These mutations frequently occur in epigenetic regulator genes, and functions of the proteins encoded by these genes in hematopoietic cells have been extensively analyzed, as reported recently. It is noteworthy that several epigenetic regulator genes, such as DNMT3A, TET2 and ASXL1, have also been identified in pre-leukemic stem cells. As targeting pre-leukemic stem cells would be a promising therapeutic approach, further investigations of epigenetic abnormalities in hematopoietic cells are anticipated to lead to the development of novel epigenetic therapies. In this review, we discuss recent genetic and functional data regarding epigenetic regulator genes and the future landscape of this new research field.


Asunto(s)
Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide/genética , Mutación , Animales , Metilación de ADN , Humanos , Transcripción Genética
18.
Blood ; 120(5): 1107-17, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22677129

RESUMEN

EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2(flox/flox) mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia-like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.


Asunto(s)
Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de Unión al ADN/fisiología , Leucemia Mieloide Aguda/genética , Factores de Transcripción/fisiología , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Proteína Potenciadora del Homólogo Zeste 2 , Eliminación de Gen , Células HEK293 , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
19.
Blood ; 120(5): 1118-29, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22740449

RESUMEN

One mechanism for disrupting the MLL gene in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is through partial tandem duplication (MLL-PTD); however, the mechanism by which MLL-PTD contributes to MDS and AML development and maintenance is currently unknown. Herein, we investigated hematopoietic stem/progenitor cell (HSPC) phenotypes of Mll-PTD knock-in mice. Although HSPCs (Lin(-)Sca1(+)Kit(+) (LSK)/SLAM(+) and LSK) in Mll(PTD/WT) mice are reduced in absolute number in steady state because of increased apoptosis, they have a proliferative advantage in colony replating assays, CFU-spleen assays, and competitive transplantation assays over wild-type HSPCs. The Mll(PTD/WT)-derived phenotypic short-term (ST)-HSCs/multipotent progenitors and granulocyte/macrophage progenitors have self-renewal capability, rescuing hematopoiesis by giving rise to long-term repopulating cells in recipient mice with an unexpected myeloid differentiation blockade and lymphoid-lineage bias. However, Mll(PTD/WT) HSPCs never develop leukemia in primary or recipient mice, suggesting that additional genetic and/or epigenetic defects are necessary for full leukemogenic transformation. Thus, the Mll-PTD aberrantly alters HSPCs, enhances self-renewal, causes lineage bias, and blocks myeloid differentiation. These findings provide a framework by which we can ascertain the underlying pathogenic role of MLL-PTD in the clonal evolution of human leukemia, which should facilitate improved therapies and patient outcomes.


Asunto(s)
Proliferación Celular , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Células Mieloides/fisiología , Proteína de la Leucemia Mieloide-Linfoide/genética , Estrés Fisiológico/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Células Cultivadas , Evolución Clonal/genética , Duplicación de Gen/fisiología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Estrés Fisiológico/efectos de los fármacos , Secuencias Repetidas en Tándem/genética
20.
Leukemia ; 38(6): 1275-1286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734786

RESUMEN

TIF1ß/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1ß was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1ß gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1ß drove the progression of BCR::ABL1-induced leukemia. In addition, the deletion of Tif1ß sensitized BCR::ABL1 KI leukemic cells to dasatinib. The deletion of Tif1ß decreased the expression levels of TIF1ß-target genes and chromatin accessibility peaks enriched with the Fosl1-binding motif in BCR::ABL1 KI stem cells. TIF1ß directly bound to the promoters of proliferation genes, such as FOSL1, in human BCR::ABL1 cells, in which TIF1ß and FOSL1 bound to adjacent regions of chromatin. Since the expression of Fosl1 was critical for the enhanced growth of BCR::ABL1 KI cells, Tif1ß and Fosl1 interacted to activate the leukemic transcriptional program in and cellular function of BCR::ABL1 KI stem cells and drove the progression of myeloid leukemia.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Proteína 28 que Contiene Motivos Tripartito , Animales , Humanos , Ratones , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA