Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2401632121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568970

RESUMEN

Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.


Asunto(s)
Chlamydomonas reinhardtii , Ecosistema , Bacterias , Eucariontes , Lipopéptidos
2.
Plant J ; 119(1): 525-539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38693717

RESUMEN

Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and ß2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the ß2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.


Asunto(s)
Chlamydomonas reinhardtii , Histonas , Regiones Promotoras Genéticas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Histonas/metabolismo , Histonas/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Secuencias Reguladoras de Ácidos Nucleicos/genética
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740967

RESUMEN

Photosynthetic microorganisms including the green alga Chlamydomonas reinhardtii are essential to terrestrial habitats as they start the carbon cycle by conversion of CO2 to energy-rich organic carbohydrates. Terrestrial habitats are densely populated, and hence, microbial interactions mediated by natural products are inevitable. We previously discovered such an interaction between Streptomyces iranensis releasing the marginolactone azalomycin F in the presence of C. reinhardtii Whether the alga senses and reacts to azalomycin F remained unknown. Here, we report that sublethal concentrations of azalomycin F trigger the formation of a protective multicellular structure by C. reinhardtii, which we named gloeocapsoid. Gloeocapsoids contain several cells which share multiple cell membranes and cell walls and are surrounded by a spacious matrix consisting of acidic polysaccharides. After azalomycin F removal, gloeocapsoid aggregates readily disassemble, and single cells are released. The presence of marginolactone biosynthesis gene clusters in numerous streptomycetes, their ubiquity in soil, and our observation that other marginolactones such as desertomycin A and monazomycin also trigger the formation of gloeocapsoids suggests a cross-kingdom competition with ecological relevance. Furthermore, gloeocapsoids allow for the survival of C. reinhardtii at alkaline pH and otherwise lethal concentrations of azalomycin F. Their structure and polysaccharide matrix may be ancestral to the complex mucilage formed by multicellular members of the Chlamydomonadales such as Eudorina and Volvox Our finding suggests that multicellularity may have evolved to endure the presence of harmful competing bacteria. Additionally, it underlines the importance of natural products as microbial cues, which initiate interesting ecological scenarios of attack and counter defense.


Asunto(s)
Agregación Celular , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/ultraestructura , Macrólidos/metabolismo , Interacciones Microbianas , Streptomyces/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389682

RESUMEN

Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.


Asunto(s)
Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Chlamydomonas reinhardtii/efectos de los fármacos , Pseudomonas/metabolismo , Carotenoides , Técnicas de Cocultivo , Genoma Bacteriano
5.
Mol Plant Microbe Interact ; 36(10): 647-655, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37227226

RESUMEN

In recent years Acidovorax avenae subsp. avenae was identified as a major cause of bacterial etiolation and decline (BED) in turfgrasses and has become a growing economical concern for the turfgrass industry. The symptoms of BED resemble those of "bakanae," or foolish seedling disease, of rice (Oryzae sativa), in which the gibberellins produced by the infecting fungus, Fusarium fujikuroi, contribute to the symptom development. Additionally, an operon coding for the enzymes necessary for bacterial gibberellin production was recently characterized in plant-pathogenic bacteria belonging to the γ-proteobacteria. We therefore investigated whether this gibberellin operon might be present in A. avenae subsp. avenae. A homolog of the operon has been identified in two turfgrass-infecting A. avenae subsp. avenae phylogenetic groups but not in closely related phylogenetic groups or strains infecting other plants. Moreover, even within these two phylogenetic groups, the operon presence is not uniform. For that reason, the functionality of the operon was examined in one strain of each turfgrass-infecting phylogenetic group (A. avenae subsp. avenae strains KL3 and MD5). All nine operon genes were functionally characterized through heterologous expression in Escherichia coli and enzymatic activities were analyzed by liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. All enzymes were functional in both investigated strains, thus demonstrating the ability of phytopathogenic ß-proteobacteria to produce biologically active GA4. This additional gibberellin produced by A. avenae subsp. avenae could disrupt phytohormonal balance and be a leading factor contributing to the pathogenicity on turf grasses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Comamonadaceae , Giberelinas , Filogenia , Poaceae , Comamonadaceae/genética , Plantas
6.
Chembiochem ; 24(18): e202300209, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37144248

RESUMEN

Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l-serine and a fatty acyl thioester. While the AOS domain was strictly specific for l-serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl-coenzyme A (C18 ). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l-serine by a FAS with a cis-acting AOS off-loading domain.


Asunto(s)
Escherichia coli , Serina C-Palmitoiltransferasa , Ácidos Grasos , Serina
7.
Angew Chem Int Ed Engl ; 61(26): e202204545, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35403785

RESUMEN

Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.


Asunto(s)
Nostoc , Vías Biosintéticas/genética , Familia de Multigenes , Nostoc/genética , Metabolismo Secundario/genética , Simbiosis
8.
Environ Microbiol ; 23(9): 5525-5540, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34347373

RESUMEN

The unicellular alga Chlamydomonas reinhardtii and the bacterium Pseudomonas protegens serve as a model to study the interactions between photosynthetic and heterotrophic microorganisms. P. protegens secretes the cyclic lipopeptide orfamide A that interferes with cytosolic Ca2+ homeostasis in C. reinhardtii resulting in deflagellation of the algal cells. Here, we studied the roles of additional secondary metabolites secreted by P. protegens using individual compounds and co-cultivation of algae with bacterial mutants. Rhizoxin S2, pyrrolnitrin, pyoluteorin, 2,4-diacetylphloroglucinol (DAPG) and orfamide A all induce changes in cell morphology and inhibit the growth of C. reinhardtii. Rhizoxin S2 exerts the strongest growth inhibition, and its action depends on the spatial structure of the environment (agar versus liquid culture). Algal motility is unaffected by rhizoxin S2 and is most potently inhibited by orfamide A (IC50  = 4.1 µM). Pyrrolnitrin and pyoluteorin both interfere with algal cytosolic Ca2+ homeostasis and motility whereas high concentrations of DAPG immobilize C. reinhardtii without deflagellation or disturbance of Ca2+ homeostasis. Co-cultivation with a regulatory mutant of bacterial secondary metabolism (ΔgacA) promotes algal growth under spatially structured conditions. Our results reveal how a single soil bacterium uses an arsenal of secreted antialgal compounds with complementary and partially overlapping activities.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Pseudomonas , Metabolismo Secundario
9.
Plant J ; 95(2): 268-281, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29729034

RESUMEN

Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non-toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that PKS1 is induced in 2-day-old zygotes and is required for their development into zygospores, the dormant stage of the zygote. Wild-type zygospores contain knob-like structures (~50 nm diameter) that form at the cell surface and develop a central cell wall layer; both of these structures are absent from homozygous pks1 mutants. Additionally, in contrast to wild-type zygotes, chlorophyll degradation is delayed in homozygous pks1 mutant zygotes, indicating a disruption in zygospore development. In agreement with the role of the PKS in the formation of the highly resistant zygospore wall, mutant zygotes have lost the formidable desiccation tolerance of wild-type zygotes. Together, our results represent functional analyses of a PKS mutant in a photosynthetic eukaryotic microorganism, revealing a central function for polyketides in the sexual cycle and survival under stressful environmental conditions.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Proteínas de Plantas/metabolismo , Sintasas Poliquetidas/metabolismo , Pared Celular/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Sintasas Poliquetidas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia
10.
Plant Physiol ; 174(1): 185-201, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28360233

RESUMEN

Cryptochromes are flavin-binding proteins that act as blue light receptors in bacteria, fungi, plants, and insects and are components of the circadian oscillator in mammals. Animal and plant cryptochromes are evolutionarily divergent, although the unicellular alga Chlamydomonas reinhardtii (Chlamydomonas throughout) has both an animal-like cryptochrome and a plant cryptochrome (pCRY; formerly designated CPH1). Here, we show that the pCRY protein accumulates at night as part of a complex. Functional characterization of pCRY was performed based on an insertional mutant that expresses only 11% of the wild-type pCRY level. The pcry mutant is defective for central properties of the circadian clock. In the mutant, the period is lengthened significantly, ultimately resulting in arrhythmicity, while blue light-based phase shifts show large deviations from what is observed in wild-type cells. We also show that pCRY is involved in gametogenesis in Chlamydomonas pCRY is down-regulated in pregametes and gametes, and in the pcry mutant, there is altered transcript accumulation under blue light of the strictly light-dependent, gamete-specific gene GAS28 pCRY acts as a negative regulator for the induction of mating ability in the light and for the loss of mating ability in the dark. Moreover, pCRY is necessary for light-dependent germination, during which the zygote undergoes meiosis that gives rise to four vegetative cells. In sum, our data demonstrate that pCRY is a key blue light receptor in Chlamydomonas that is involved in both circadian timing and life cycle progression.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Relojes Circadianos/genética , Criptocromos/genética , Estadios del Ciclo de Vida/genética , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/metabolismo , Criptocromos/metabolismo , Luz , Mutación , Reproducción/genética , Reproducción/efectos de la radiación , Esporas/genética , Esporas/efectos de la radiación
11.
BMC Genomics ; 16: 1015, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26611533

RESUMEN

BACKGROUND: Polyketide synthase (PKS) catalyzes the biosynthesis of polyketides, which are structurally and functionally diverse natural products in microorganisms and plants. Here, we have analyzed available full genome sequences of microscopic and macroscopic algae for the presence of type I PKS genes. RESULTS: Type I PKS genes are present in 15 of 32 analyzed algal species. In chlorophytes, large proteins in the MDa range are predicted in most sequenced species, and PKSs with free-standing acyltransferase domains (trans-AT PKSs) predominate. In a phylogenetic tree, PKS sequences from different algal phyla form clades that are distinct from PKSs from other organisms such as non-photosynthetic protists or cyanobacteria. However, intermixing is observed in some cases, for example polyunsaturated fatty acid (PUFA) and glycolipid synthases of various origins. Close relationships between type I PKS modules from different species or between modules within the same multimodular enzyme were identified, suggesting module duplications during evolution of algal PKSs. In contrast to type I PKSs, nonribosomal peptide synthetases (NRPSs) are relatively rare in algae (occurrence in 7 of 32 species). CONCLUSIONS: Our phylogenetic analysis of type I PKSs in algae supports an evolutionary scenario whereby integrated AT domains were displaced to yield trans-AT PKSs. Together with module duplications, the displacement of AT domains may constitute a major mechanism of PKS evolution in algae. This study advances our understanding of the diversity of eukaryotic PKSs and their evolutionary trajectories.


Asunto(s)
Sintasas Poliquetidas/metabolismo , Chlorophyta/enzimología , Dinoflagelados/enzimología , Ácidos Grasos Insaturados/metabolismo , Microalgas/enzimología , Sintasas Poliquetidas/genética , Especificidad por Sustrato
12.
Plant Physiol ; 165(1): 388-97, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24627342

RESUMEN

Photosynthetic microalgae play a vital role in primary productivity and biogeochemical cycling in both marine and freshwater systems across the globe. However, the growth of these cosmopolitan organisms depends on the bioavailability of nutrients such as vitamins. Approximately one-half of all microalgal species requires vitamin B12 as a growth supplement. The major determinant of algal B12 requirements is defined by the isoform of methionine synthase possessed by an alga, such that the presence of the B12-independent methionine synthase (METE) enables growth without this vitamin. Moreover, the widespread but phylogenetically unrelated distribution of B12 auxotrophy across the algal lineages suggests that the METE gene has been lost multiple times in evolution. Given that METE expression is repressed by the presence of B12, prolonged repression by a reliable source of the vitamin could lead to the accumulation of mutations and eventually gene loss. Here, we probe METE gene regulation by B12 and methionine/folate cycle metabolites in both marine and freshwater microalgal species. In addition, we identify a B12-responsive element of Chlamydomonas reinhardtii METE using a reporter gene approach. We show that complete repression of the reporter occurs via a region spanning -574 to -90 bp upstream of the METE start codon. A proteomics study reveals that two other genes (S-Adenosylhomocysteine hydrolase and Serine hydroxymethyltransferase2) involved in the methionine-folate cycle are also repressed by B12 in C. reinhardtii. The strong repressible nature and high sensitivity of the B12-responsive element has promising biotechnological applications as a cost-effective regulatory gene expression tool.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Microalgas/genética , Vitamina B 12/farmacología , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/química , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Secuencia de Aminoácidos , Chlamydomonas/efectos de los fármacos , Chlamydomonas/genética , Genes Reporteros , Microalgas/efectos de los fármacos , Microalgas/enzimología , Datos de Secuencia Molecular , Proteómica , Elementos de Respuesta/genética
13.
Plant Cell ; 24(7): 2992-3008, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22773746

RESUMEN

Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light-activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Criptocromos/metabolismo , Luz , Ciclo Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Clorofila/metabolismo , Relojes Circadianos , Ritmo Circadiano , Criptocromos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flavinas/metabolismo , Prueba de Complementación Genética , Mutagénesis Insercional , Oxidación-Reducción , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Transgenes
14.
Plant Signal Behav ; 19(1): 2300228, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38165809

RESUMEN

The flooding of agricultural land leads to hypoxia and nitrate leaching. While understanding the plant's response to these conditions is essential for crop improvement, the effect of extended nitrate limitation on subsequent hypoxia has not been studied in an organ-specific manner. We cultivated Arabidopsis thaliana without nitrate for 1 week before inducing hypoxia by bubbling the hydroponic solution with nitrogen gas for 16 h. In the roots, the transcripts of two transcription factor genes (HRA1, HRE2) and three genes involved in fermentation (SUS4, PDC1, ADH1) were ~10- to 100-fold upregulated by simultaneous hypoxia and nitrate starvation compared to the control condition (replete nitrate and oxygen). In contrast, this hypoxic upregulation was ~5 to 10 times stronger when nitrate was available. The phytoglobin genes PGB1 and PGB2, involved in nitric oxide (NO) scavenging, were massively downregulated by nitrate starvation (~1000-fold and 105-fold, respectively), but only under ambient oxygen levels; this was reflected in a 2.5-fold increase in NO concentration. In the leaves, HRA1, SUS4, and RAP2.3 were upregulated ~20-fold by hypoxia under nitrate starvation, whereas this upregulation was virtually absent in the presence of nitrate. Our results highlight that the plant's responses to nitrate starvation and hypoxia can influence each other.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nitratos/metabolismo , Hipoxia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
15.
EMBO J ; 28(14): 2128-42, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19556970

RESUMEN

Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active-site residues. However, its catalytic efficiency increases >100-fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate-pathway enzyme. The 2.35 A crystal structure of the MtCM-MtDS complex bound to a transition-state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active-site residues on binding to MtDS. The mutagenesis of the C-terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate-mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non-covalent enzyme complexes comprising an AroQ(delta) subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/química , Corismato Mutasa/química , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Clonación Molecular , Corynebacterium glutamicum/enzimología , Cristalografía por Rayos X , Activación Enzimática , Malatos/química , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium tuberculosis/metabolismo , Fenilalanina/metabolismo , Alineación de Secuencia , Ácido Shikímico/metabolismo , Tirosina/metabolismo
16.
Plant Direct ; 7(1): e480, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685735

RESUMEN

Old Yellow Enzymes (OYEs) are flavin-containing ene-reductases that have been intensely studied with regard to their biotechnological potential for sustainable chemical syntheses. OYE-encoding genes are found throughout the domains of life, but their physiological role is mostly unknown, one reason for this being the promiscuity of most ene-reductases studied to date. The unicellular green alga Chlamydomonas reinhardtii possesses four genes coding for OYEs, three of which we have analyzed biochemically before. Ene-reductase CrOYE3 stood out in that it showed an unusually narrow substrate scope and converted N-methylmaleimide (NMI) with high rates. This was recapitulated in a C. reinhardtii croye3 mutant that, in contrast to the wild type, hardly degraded externally added NMI. Here we show that CrOYE3-mediated NMI conversion depends on electrons generated photosynthetically by photosystem II (PSII) and that the croye3 mutant exhibits slightly decreased photochemical quenching in high light. Non-photochemical quenching is strongly impaired in this mutant, and it shows enhanced oxidative stress. The phenotypes of the mutant suggest that C. reinhardtii CrOYE3 is involved in the protection against photooxidative stress, possibly by converting reactive carbonyl species derived from lipid peroxides or maleimides from tetrapyrrole degradation.

17.
Environ Microbiol ; 14(6): 1466-76, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22463064

RESUMEN

Many algae are auxotrophs for vitamin B(12) (cobalamin), which they need as a cofactor for B(12) -dependent methionine synthase (METH). Because only prokaryotes can synthesize the cobalamin, they must be the ultimate source of the vitamin. In the laboratory, a direct interaction between algae and heterotrophic bacteria has been shown, with bacteria supplying cobalamin in exchange for fixed carbon. Here we establish a system to study this interaction at the molecular level. In a culture of a B(12) -dependent green alga Chlamydomonas nivalis, we found a contaminating bacterium, identified by 16S rRNA analysis as Mesorhizobium sp. Using the sequenced strain of M. loti (MAFF303099), we found that it was able to support the growth of B(12) -dependent Lobomonas rostrata, another green alga, in return for fixed carbon. The two organisms form a stable equilibrium in terms of population numbers, which is maintained over many generations in semi-continuous culture, indicating a degree of regulation. However, addition of either vitamin B(12) or a carbon source for the bacteria perturbs the equilibrium, demonstrating that the symbiosis is mutualistic and facultative. Chlamydomonas reinhardtii does not require B(12) for growth because it encodes a B(12) -independent methionine synthase, METE, the gene for which is suppressed by addition of exogenous B(12) . Co-culturing C. reinhardtii with M. loti also results in reduction of METE expression, demonstrating that the bacterium can deliver the vitamin to this B(12) -independent alga. We discuss the implications of this for the widespread distribution of cobalamin auxotrophy in the algal kingdom.


Asunto(s)
Bacterias/metabolismo , Chlorophyta/fisiología , Simbiosis/fisiología , Vitamina B 12/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Bacterias/genética , Procesos Heterotróficos , Microbiología del Suelo
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 10): 1048-52, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19851019

RESUMEN

Chorismate mutase catalyzes a key step in the shikimate-biosynthetic pathway and hence is an essential enzyme in bacteria, plants and fungi. Mycobacterium tuberculosis contains two chorismate mutases, a secreted and an intracellular one, the latter of which (MtCM; Rv0948c; 90 amino-acid residues; 10 kDa) is the subject of this work. Here are reported the gene expression, purification and crystallization of MtCM alone and of its complex with another shikimate-pathway enzyme, DAHP synthase (MtDS; Rv2178c; 472 amino-acid residues; 52 kDa), which has been shown to enhance the catalytic efficiency of MtCM. The MtCM-MtDS complex represents the first noncovalent enzyme complex from the common shikimate pathway to be structurally characterized. Soaking experiments with a transition-state analogue are also reported. The crystals of MtCM and the MtCM-MtDS complex diffracted to 1.6 and 2.1 A resolution, respectively.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/química , Corismato Mutasa/química , Mycobacterium tuberculosis/enzimología , Cristalización , Cristalografía por Rayos X , Complejos Multienzimáticos/química
20.
Elife ; 72018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382941

RESUMEN

In the mid-20th century, the unicellular and genetically tractable green alga Chlamydomonas reinhardtii was first developed as a model organism to elucidate fundamental cellular processes such as photosynthesis, light perception and the structure, function and biogenesis of cilia. Various studies of C. reinhardtii have profoundly advanced plant and cell biology, and have also impacted algal biotechnology and our understanding of human disease. However, the 'real' life of C. reinhardtii in the natural environment has largely been neglected. To extend our understanding of the biology of C. reinhardtii, it will be rewarding to explore its behavior in its natural habitats, learning more about its abundance and life cycle, its genetic and physiological diversity, and its biotic and abiotic interactions.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Ecosistema , Genómica , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA