Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893235

RESUMEN

Coiled-coil (CC) dimers are widely used in protein design because of their modularity and well-understood sequence-structure relationship. In CC protein origami design, a polypeptide chain is assembled from a defined sequence of CC building segments that determine the self-assembly of protein cages into polyhedral shapes, such as the tetrahedron, triangular prism, or four-sided pyramid. However, a targeted functionalization of the CC modules could significantly expand the versatility of protein origami scaffolds. Here, we describe a panel of single-chain camelid antibodies (nanobodies) directed against different CC modules of a de novo designed protein origami tetrahedron. We show that these nanobodies are able to recognize the same CC modules in different polyhedral contexts, such as isolated CC dimers, tetrahedra, triangular prisms, or trigonal bipyramids, thereby extending the ability to functionalize polyhedra with nanobodies in a desired stoichiometry. Crystal structures of five nanobody-CC complexes in combination with small-angle X-ray scattering show binding interactions between nanobodies and CC dimers forming the edges of a tetrahedron with the nanobody entering the tetrahedral cavity. Furthermore, we identified a pair of allosteric nanobodies in which the binding to the distant epitopes on the antiparallel homodimeric APH CC is coupled via a strong positive cooperativity. A toolbox of well-characterized nanobodies specific for CC modules provides a unique tool to target defined sites in the designed protein structures, thus opening numerous opportunities for the functionalization of CC protein origami polyhedra or CC-based bionanomaterials.


Asunto(s)
Conformación Proteica en Hélice alfa/fisiología , Ingeniería de Proteínas/métodos , Anticuerpos de Dominio Único/química , Dimerización , Modelos Moleculares , Péptidos/química , Polímeros/metabolismo , Conformación Proteica en Hélice alfa/genética , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Pliegue de Proteína , Multimerización de Proteína , Proteínas/química , Anticuerpos de Dominio Único/metabolismo
2.
J Am Chem Soc ; 145(31): 16995-17000, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37486611

RESUMEN

Coiled-coil protein origami (CCPO) uses modular coiled-coil building blocks and topological principles to design polyhedral structures distinct from those of natural globular proteins. While the CCPO strategy has proven successful in designing diverse protein topologies, no high-resolution structural information has been available about these novel protein folds. Here we report the crystal structure of a single-chain CCPO in the shape of a triangle. While neither cyclization nor the addition of nanobodies enabled crystallization, it was ultimately facilitated by the inclusion of a GCN2 homodimer. Triangle edges are formed by the orthogonal parallel coiled-coil dimers P1:P2, P3:P4, and GCN2 connected by short linkers. A triangle has a large central cavity and is additionally stabilized by side-chain interactions between neighboring segments at each vertex. The crystal lattice is densely packed and stabilized by a large number of contacts between triangles. Interestingly, the polypeptide chain folds into a trefoil-type protein knot topology, and AlphaFold2 fails to predict the correct fold. The structure validates the modular CC-based protein design strategy, providing molecular insight underlying CCPO stabilization and new opportunities for the design.


Asunto(s)
Péptidos , Proteínas , Proteínas/química , Péptidos/química
3.
Cell Discov ; 10(1): 8, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228615

RESUMEN

The regulation of protein function by external or internal signals is one of the key features of living organisms. The ability to directly control the function of a selected protein would represent a valuable tool for regulating biological processes. Here, we present a generally applicable regulation of proteins called INSRTR, based on inserting a peptide into a loop of a target protein that retains its function. We demonstrate the versatility and robustness of coiled-coil-mediated regulation, which enables designs for either inactivation or activation of selected protein functions, and implementation of two-input logic functions with rapid response in mammalian cells. The selection of insertion positions in tested proteins was facilitated by using a predictive machine learning model. We showcase the robustness of the INSRTR strategy on proteins with diverse folds and biological functions, including enzymes, signaling mediators, DNA binders, transcriptional regulators, reporters, and antibody domains implemented as chimeric antigen receptors in T cells. Our findings highlight the potential of INSRTR as a powerful tool for precise control of protein function, advancing our understanding of biological processes and developing biotechnological and therapeutic interventions.

4.
Methods Mol Biol ; 2671: 3-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37308636

RESUMEN

Coiled-coil protein origami (CCPO) is a rationally designed de novo protein fold, constructed by concatenating coiled-coil forming segments into a polypeptide chain, that folds into polyhedral nano-cages. To date, nanocages in the shape of a tetrahedron, square pyramid, trigonal prism, and trigonal bipyramid have been successfully designed and extensively characterized following the design principles of CCPO. These designed protein scaffolds and their favorable biophysical properties are suitable for functionalization and other various biotechnological applications. To further facilitate the development, we are presenting a detailed guide to the world of CCPO, starting from design (CoCoPOD, an integrated platform for designing CCPO strictures) and cloning (modified Golden-gate assembly) to fermentation and isolation (NiNTA, Strep-trap, IEX, and SEC) concluding with standard characterization techniques (CD, SEC-MALS, and SAXS).


Asunto(s)
Biotecnología , Ligando de CD40 , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Biofisica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA