Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139048

RESUMEN

Cdc42 is a small GTPase essential for the cell cycle, morphogenesis, and cell adhesion, and it is involved in the polarity of epithelial cells. However, the functional roles of Cdc42 in exocrine glands, such as the maintenance of acini and water secretion, are not yet well understood. In this study, we generated acinar-cell-specific Cdc42 conditional knockout (Cdc42cKO) mice to assess their maintenance of acinar cells and physiological functions in the salivary glands (SGs) and lacrimal glands (LGs). Our data revealed that the loss of Cdc42 altered the luminal structures to bulging structures and induced acinar cell apoptosis in both the parotid glands (PGs) and LGs of Cdc42cKO mice. Interestingly, saliva secretion in response to pilocarpine stimulation was decreased in the Cdc42cKO group, whereas tear secretion was increased. Consistent with the water secretion results, protein expression of the water channel AQP5 in acinar cells was also decreased in the PGs but conversely increased in the LGs. Moreover, the changes that increased AQP5 expression in LGs occurred in the acinar cells rather than the duct cells. The present study demonstrates that Cdc42 is involved in the structural and survival maintenance of acinar cells in SGs and LGs. On the other hand, depletion of Cdc42 caused the opposite physiological phenomena between PGs and LGs.


Asunto(s)
Células Acinares , Saliva , Animales , Ratones , Células Acinares/metabolismo , Saliva/metabolismo , Glándulas Salivales/metabolismo , Lágrimas/metabolismo , Agua/metabolismo
2.
J Pharmacol Sci ; 149(1): 20-26, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35369901

RESUMEN

Early detection of such retinal diseases as glaucoma and age-related macular degeneration (AMD) is important to prevent blindness. There have been reports of changes in some components in the tears of glaucoma and AMD patients, suggesting tears' potential usefulness in screening for retinal diseases. We hypothesized that retinal damage might alter gene expression in the lacrimal gland, leading to those changes in tear components. We caused retinal damage in mice by intravitreal injection of N-methyl-d-aspartate (NMDA) or excessive light exposure. Hematoxylin and eosin staining showed no histological changes in the lacrimal glands of animals whose retinas had been damaged. However, RNA sequencing of lacrimal glands on the 3rd day after NMDA injection or light exposure revealed changes in the expression of 491 genes (268 up-regulated; 223 down-regulated) in the NMDA group and 531 genes (311 up-regulated; 220 down-regulated) in the light group. Further gene-set enrichment analysis indicated that both types of retinal damage activated the immune system in the lacrimal glands. This is the first demonstration that retinal damage can alter gene expression in the lacrimal glands, and it might lead to a novel non-invasive screening method for early detection of retinal diseases.


Asunto(s)
Aparato Lagrimal , Enfermedades de la Retina , Animales , Humanos , Inyecciones Intravítreas , Aparato Lagrimal/metabolismo , Ratones , Retina , Enfermedades de la Retina/metabolismo , Transcriptoma
3.
J Pharmacol Sci ; 149(2): 66-72, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35512857

RESUMEN

Organ bath experiments are conventionally used to investigate the physiological actions and effects of hormones and drugs on organ responses. We developed an experimental method to reproduce insulin secretion from isolated rat pancreas preparations, to investigate substances that promote insulin secretion ex vivo. 1,5-anhydro-D-glucitol (1,5-AG) is found in foods, and exists in humans and rodents; however, whether 1,5-AG stimulates insulin secretion remains unclear. This study aimed to assess the effects of short-term 1,5-AG stimulation on insulin secretion in both ex vivo and in INS-1E (rat-derived) cells in vitro. Our results indicated that 1,5-AG had no potency to increase the proportion of insulin outflow both in ex vivo and in vitro experiments. Insulin outflow significantly increased upon stimulation with 10 µM glimepiride, a member of the sulfonylurea class of drugs, ex vivo. Glucose-stimulated insulin secretion was observed not only in INS-1E cells but also in rat pancreatic preparations. Our findings demonstrated that short-term exposure to 1,5-AG had no effect on insulin secretion in rats.


Asunto(s)
Insulina , Sorbitol , Animales , Desoxiglucosa , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Páncreas/metabolismo , Ratas , Sorbitol/metabolismo
4.
Bioorg Chem ; 127: 105969, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926240

RESUMEN

Pyrazole-based carbohydrazone hybrids have been considered to be a remarkable class of compounds in pharmaceutical chemistry. Here, we reported bioactivities of 4-(3-(2-(arylidene)hydrazin-1-carbonyl)-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamides (1-27) towards CA isoenzymes (hCA I, hCA II, hCA IX) and human oral squamous cell carcinoma cell line. Compounds 19 (Ki = 10.1 nM, hCA I/hCA IX = 749.6), 22 (Ki = 18.5 nM, hCA I/hCA IX = 429.2), 26 (Ki = 14.5 nM, hCA I/hCA IX = 596.9), 27 (Ki = 21.5 nM, hCA I/hCA IX = 413.1) were more potent and selective inhibitors of cancer-associated hCA IX isoenzyme. Compounds 22 and 26 were also found to be approximately three times more selective hCA IX inhibitors over off-target hCA II at low nanomolar. Compounds 19, 22, 23, 24, and 26 with IC50 of 1.6-1.7 µM showed potent cytotoxicity against human oral squamous cell carcinoma cell line as compared with human gingival fibroblast, producing the tumor-specificity value over 100. This was due to its cytostatic growth inhibition accompanied by a slight but significant dose-dependent increase in cell shrinkage and subG1 cell accumulation and marginal activation of caspase 3 substrates. Bioassay results showed that carbohydrazone-based hybrids could be useful candidates to design novel anticancer compounds and selective carbonic anhydrase inhibitors.


Asunto(s)
Anhidrasas Carbónicas , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica IX , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Humanos , Hidrazonas/farmacología , Isoenzimas/metabolismo , Estructura Molecular , Pirazoles/química , Pirazoles/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello , Relación Estructura-Actividad , Sulfonamidas , Zinc , Bencenosulfonamidas
5.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269748

RESUMEN

BACKGROUND: Very few papers covering the anticancer activity of azulenes have been reported, as compared with those of antibacterial and anti-inflammatory activity. This led us to investigate the antitumor potential of fifteen 4,6,8-trimethyl azulene amide derivatives against oral malignant cells. METHODS: 4,6,8-Trimethyl azulene amide derivatives were newly synthesized. Anticancer activity was evaluated by tumor-specificity against four human oral squamous cell carcinoma (OSCC) cell lines over three normal oral cells. Neurotoxicity was evaluated by cytotoxicity against three neuronal cell lines over normal oral cells. Apoptosis induction was evaluated by Western blot and cell cycle analyses. RESULTS: Among fifteen derivatives, compounds 7, 9, and 15 showed the highest anticancer activity, and relatively lower neurotoxicity than doxorubicin, 5-fluorouracil (5-FU), and melphalan. They induced the accumulation of a comparable amount of a subG1 population, but slightly lower extent of caspase activation, as compared with actinomycin D, used as an apoptosis inducer. The quantitative structure-activity relationship analysis suggests the significant correlation of tumor-specificity with a 3D shape of molecules, and possible involvement of inflammation and hormone receptor response pathways. CONCLUSIONS: Compounds 7 and 15 can be potential candidates of a lead compound for developing novel anticancer drugs.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de la Boca , Síndromes de Neurotoxicidad , Amidas/farmacología , Amidas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Azulenos , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Neoplasias de la Boca/patología , Receptores Citoplasmáticos y Nucleares
6.
Molecules ; 27(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36235258

RESUMEN

Two series of novel unsymmetrical 3,5-bis(benzylidene)-4 piperidones 2a-f and 3a-e were designed as candidate antineoplastic agents. These compounds display potent cytotoxicity towards two colon cancers, as well as several oral squamous cell carcinomas. These compounds are less toxic to various non-malignant cells giving rise to large selectivity index (SI) figures. Many of the compounds are also cytotoxic towards CEM lymphoma and HL-60 leukemia cells. Representative compounds induced apoptotic cell death characterized by caspase-3 activation and subG1 accumulation in some OSCC cells, as well as the depolarization of the mitochondrial membrane potential in CEM cells. A further line of inquiry was directed to finding if the SI values are correlated with the atomic charges on the olefinic carbon atoms. The potential of these compounds as antineoplastic agents was enhanced by an ADME (absorption, distribution, metabolism, and excretion) evaluation of five lead molecules, which revealed no violations.


Asunto(s)
Antineoplásicos , Piperidonas , Antineoplásicos/farmacología , Apoptosis , Carbono/farmacología , Caspasa 3/farmacología , Línea Celular Tumoral , Humanos , Piperidonas/farmacología
7.
J Physiol ; 598(21): 4907-4925, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780506

RESUMEN

KEY POINTS: Few reports have explored the possibility of involvement of non-inflammatory factors in lacrimal hyposecretion in Sjögren's syndrome (SS). RNA-sequencing analysis revealed that only four genes, including arginase 1, were downregulated in the lacrimal gland of SS model male mice (NOD mice) after onset of lacrimal hyposecretion and dacryoadenitis. Even in non-dacryoadenitis-type NOD mice, tear secretion and arginase 1 expression remained low. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. The results indicate that a non-inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status. ABSTRACT: Lacrimal fluid (tears) is important for preservation of the ocular surface, and thus lacrimal hyposecretion in Sjögren's syndrome (SS) leads to reduced quality of life. However, the cause(s) of lacrimal hyposecretion remains unknown, even though many studies have been conducted from the perspective of inflammation. Here, we hypothesized that a non-inflammatory factor induces lacrimal hyposecretion in SS pathology, and to elucidate such a factor, we conducted transcriptome analysis of the lacrimal glands in male non-obese diabetic (NOD) mice as an SS model. The NOD mice showed inflammatory cell infiltration and decreased pilocarpine-induced tear secretion at and after 6 weeks of age compared to age-matched BALB/c mice. RNA-sequencing analysis revealed that only four genes, including arginase 1, were downregulated, whereas many genes relating to inflammation were upregulated, in the lacrimal glands of male NOD mice after onset of lacrimal hyposecretion and dacryoadenitis (lacrimal gland inflammation). Changes in the level of arginase 1 expression were confirmed by real-time RT-PCR and western blot analysis. Furthermore, non-dacryoadenitis-type NOD mice were used to investigate the relationships among arginase 1 expression, lacrimal hyposecretion and dacryoadenitis. Interestingly, these NOD mice retained the phenotype of dacryoadenitis with regard to tear secretion and arginase 1 expression level. An arginase 1 inhibitor reduced tear secretion and partially reduced saliva secretion in BALB/c mice. In conclusion, a non-inflammatory factor, arginase 1, is involved in lacrimal hyposecretion in male NOD mice, regardless of dacryoadenitis status. These results shed light on the pathophysiological role of arginase 1 in SS (dry eye).


Asunto(s)
Dacriocistitis , Aparato Lagrimal , Síndrome de Sjögren , Animales , Arginasa/genética , Dacriocistitis/genética , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Calidad de Vida , Síndrome de Sjögren/genética
8.
Am J Physiol Gastrointest Liver Physiol ; 310(6): G399-409, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744470

RESUMEN

Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.


Asunto(s)
Amilasas/metabolismo , Colecistoquinina/farmacología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Proteínas de la Membrana/biosíntesis , Páncreas/metabolismo , Proteína Quinasa C/metabolismo , Acetofenonas/farmacología , Animales , Benzopiranos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colecistoquinina/antagonistas & inhibidores , Citosol/efectos de los fármacos , Citosol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Páncreas/efectos de los fármacos , Páncreas/enzimología , Fosforilación , Proteína Quinasa C-delta/efectos de los fármacos , Proteína Quinasa C-delta/metabolismo , Proteínas Qa-SNARE/metabolismo , Ratas , Ratas Sprague-Dawley , Translocación Genética
9.
J Physiol Sci ; 74(1): 38, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075341

RESUMEN

This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals. However, pilocarpine-induced salivary secretion was reduced in an age-dependent manner, showing a significantly low level at the age of 72 weeks. Pilocarpine-induced salivary secretion was significantly reduced by pretreatment with a CD36 inhibitor at 8 and 48 weeks, but not at 72 weeks. In senescence-accelerated mice (SAM), the pilocarpine-induced salivary secretion was significantly reduced at the age of 56 weeks, and a significantly lower amount of CD36 was demonstrated in the parotid gland, compared with the control. These results suggest that the involvement of parotid CD36 in mouse salivary secretion is altered with age.


Asunto(s)
Envejecimiento , Antígenos CD36 , Ratones Endogámicos BALB C , Glándula Parótida , Saliva , Animales , Glándula Parótida/metabolismo , Antígenos CD36/metabolismo , Ratones , Masculino , Saliva/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Pilocarpina/farmacología , Salivación/efectos de los fármacos
10.
Front Cell Neurosci ; 18: 1345651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380382

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms, and it is associated with several prodromal non-motor symptoms, including an impaired sense of smell, taste and touch. We previously reported that bitter taste impairments occur independently of olfactory impairments in an early-stage PD animal model using short-term intranasal rotenone-treated mice. Cool temperatures also affect bitter taste perception, but it remains unclear whether or not bitter taste impairments result from an altered sensitivity for intraoral cool stimuli. We examined disturbances in the intraoral menthol sensitivity, such as coolness at low concentrations of menthol, using a brief-access test. Once a day, one solution from the 7-concentration series of (-)-menthol (0-2.3 mM) or the bitter taste quinine-HCl (0.3 mM) was randomly presented 20 times for 10 s to water-deprived mice before and 1 week after rotenone treatment. The total number of licks within 20 times was significantly decreased with the presentation of 2.3 mM menthol and quinine-HCl, compared to distilled water in untreated mice, but not in rotenone-treated mice. The correlation between the licks for quinine-HCl and that for menthol was increased after rotenone treatment. In contrast, the 2-bottle choice test for 48 h clarified that menthol sensitivity was increased after rotenone treatment. Furthermore, a thermal place preference test revealed that seeking behavior toward a cold-floored room was increased in the rotenone-treated mice despite the unchanged plantar cutaneous cold sensitivity. These results suggest that taste impairments in this model mice are at least partly due to intraoral somatosensory impairments, accompanied by peripheral/central malfunction.

11.
Pflugers Arch ; 465(2): 271-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23179381

RESUMEN

Non-obese diabetic (NOD) mice have been used as a model for dry mouth. NOD mice lacking the gene encoding E2f1, a transcription factor, develop hyposalivation more rapidly progressively than control NOD mice. However, the model mice are associated with an underlying disease such as diabetes. We have now established E2f1-deficient NOD/severe combined immunodeficiency disease (NOD/SCID.E2f1(-/-)) mice to avoid the development of diabetes (Matsui-Inohara et al., Exp Biol Med (Maywood) 234(12):1525-1536, 2009). In this study, we investigated the pathophysiological features of dry mouth using NOD/SCID.E2f1(-/-) mice. In NOD/SCID.E2f1(-/-) mice, the volume of secreted saliva stimulated with pilocarpine is about one third that of control NOD/SCID mice. In behavioral analysis, NOD/SCID.E2f1(-/-) mice drank plenty of water when they ate dry food, and the frequency and time of water intake were almost double compared with control NOD/SCID mice. Histological analysis of submandibular glands with hematoxylin-eosin stain revealed that NOD/SCID.E2f1(-/-) mice have more ducts than NOD/SCID mice. In western blot analysis, the expression of aquaporin 5 (AQP5), a marker of acinar cells, in parotid and in submandibular glands of NOD/SCID.E2f1(-/-) mice was lower than in NOD/SCID mice. Immunohistochemical analysis of parotid and submandibular acini revealed that the localization of AQP5 in NOD/SCID.E2f1(-/-) mice differs from that in NOD/SCID mice; AQP5 was leaky and diffusively localized from the apical membrane to the cytosol in NOD/SCID.E2f1(-/-) mice. The ubiquitination of AQP5 was detected in submandibular glands of NOD/SCID.E2f1(-/-) mice. These findings suggest that the change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland cause the pathogenesis of hyposalivation in NOD/SCID.E2f1(-/-) mice.


Asunto(s)
Células Acinares/metabolismo , Acuaporina 5/metabolismo , Regulación hacia Abajo , Factor de Transcripción E2F1/genética , Conductos Salivales/metabolismo , Xerostomía/metabolismo , Células Acinares/patología , Animales , Acuaporina 5/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Ingestión de Líquidos , Expresión Génica , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Glándula Parótida/metabolismo , Glándula Parótida/patología , Pilocarpina/farmacología , Conductos Salivales/patología , Salivación/efectos de los fármacos , Salivación/genética , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Ubiquitinación , Xerostomía/genética , Xerostomía/fisiopatología
12.
J Oral Biosci ; 65(3): 211-217, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37209839

RESUMEN

BACKGROUND: Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS: Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION: In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.


Asunto(s)
Diabetes Mellitus , Queratoconjuntivitis Seca , Síndrome de Sjögren , Xerostomía , Ratones , Animales , Masculino , Femenino , Síndrome de Sjögren/genética , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/metabolismo , Ratones Endogámicos NOD , Queratoconjuntivitis Seca/tratamiento farmacológico , Queratoconjuntivitis Seca/metabolismo , Inflamación , ARN/uso terapéutico
13.
In Vivo ; 37(1): 149-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593026

RESUMEN

BACKGROUND/AIM: This study evaluated the effect of blueberry leaf hot water extract (BLEx) on Sjögren's syndrome (SS)-like lacrimal hyposecretion in male non-obese diabetic (NOD) mice. MATERIALS AND METHODS: NOD or BALB/c mice were fed 1% BLEx or control (AIN-93G) for 2 weeks from the age of 4 to 6 weeks. Pilocarpine-induced tear volume was measured using a phenol red-impregnated thread. The lacrimal glands were evaluated histologically by H&E staining. The IL-1ß and TNF-α levels in the lacrimal gland tissue were measured by ELISA. The mRNA expression levels of secretion-related proteins were measured by real-time PCR. LC3 I/II and arginase 1 expression levels were measured by western blot. RESULTS: After feeding with BLEx, pilocarpine-induced tear secretion in NOD mice was increased. In contrast, the mRNA expression levels of the cholinergic muscarinic M3 receptor, aquaporin 5, and ion channels related to lacrimal secretion were not changed by BLEx administration. In addition, the protein expression of arginase 1, which was recently reported to be involved in tear hyposecretion in NOD mice, was also not improved by BLEx administration. Although infiltration in the lacrimal gland of NOD mice was not decreased, the levels of TNF-α and the autophagy-related protein LC3 were significantly suppressed by BLEx treatment. CONCLUSION: BLEx treatment may ameliorate lacrimal hyposecretion in NOD mice by delaying the progression of autoimmune disease by suppressing autophagy in lacrimal glands.


Asunto(s)
Arándanos Azules (Planta) , Diabetes Mellitus Experimental , Aparato Lagrimal , Síndrome de Sjögren , Masculino , Animales , Ratones , Síndrome de Sjögren/tratamiento farmacológico , Aparato Lagrimal/metabolismo , Aparato Lagrimal/patología , Ratones Endogámicos NOD , Arándanos Azules (Planta)/genética , Arginasa/metabolismo , Arginasa/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Pilocarpina/metabolismo , Pilocarpina/farmacología , Diabetes Mellitus Experimental/metabolismo , Extractos Vegetales/farmacología , ARN Mensajero/genética , Modelos Animales de Enfermedad
14.
In Vivo ; 37(3): 1003-1015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37103112

RESUMEN

BACKGROUND/AIM: Tears secreted from the lacrimal gland are essential for preserving the ocular surface. Thus, dysfunction of the lacrimal gland in Sjögren's syndrome (SS) can lead to dry eye, resulting in a reduced quality of life. We previously reported that blueberry 'leaf' water extract prevents lacrimal hyposecretion in male non-obese diabetic (NOD) mice in a SS-like model. In this study, we investigated the effect of blueberry 'stem' water extract (BStEx) on lacrimal hyposecretion in NOD mice. MATERIALS AND METHODS: Male NOD mice were fed 1% BStEx or control (AIN-93G) for 2, 4, or 6 weeks from 4 weeks of age. Pilocarpine-induced tear secretion was measured using a phenol red-impregnated thread. The lacrimal glands were histologically evaluated by HE staining. Inflammatory cytokine levels in the lacrimal glands were measured using ELISA. Immunostaining was performed to examine aquaporin 5 (AQP5) localization. The expression levels of autophagy-related proteins, AQP5, and phosphorylated AMPK were measured using western blotting. RESULTS: After feeding BStEx to mice for 4 or 6 weeks, tear volume was observed to have increased in the BStEx group compared with that in the control group. There were no significant differences in inflammatory cell infiltration, autophagy-related protein expression, or the localization and expression of AQP5 in the lacrimal glands between the two groups. In contrast, AMPK phosphorylation increased in the BStEx group. CONCLUSION: BStEx prevented lacrimal hyposecretion in the SS-like model of male NOD mice, probably by opening tight junctions via the activation of AMPK in lacrimal acinar cells.


Asunto(s)
Arándanos Azules (Planta) , Diabetes Mellitus Experimental , Aparato Lagrimal , Síndrome de Sjögren , Masculino , Ratones , Animales , Aparato Lagrimal/metabolismo , Aparato Lagrimal/patología , Ratones Endogámicos NOD , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Calidad de Vida , Extractos Vegetales/farmacología , Modelos Animales de Enfermedad
15.
Pflugers Arch ; 464(4): 375-89, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903161

RESUMEN

In order to assess the contribution of the water channel aquaporin-5 (AQP5) to water transport by salivary gland acinar cells, we measured the cell volume and activation energy (E (a)) of diffusive water permeability in isolated parotid acinar cells obtained from AQP5-G103D mutant and their wild-type rats. Immunohistochemistry showed that there was no change induced by carbamylcholine (CCh; 1 µM) in the AQP5 detected in the acinar cells in the wild-type rat. Acinar cells from mutant rats, producing low levels of AQP5 in the apical membrane, showed a minimal increase in the AQP5 due to the CCh. In the wild-type rat, CCh caused a transient swelling of the acinus, followed by a rapid agonist-induced cell shrinkage, reaching a plateau at 30 s. In the mutant rat, the acinus did not swell by CCh challenge, and the agonist-induced cell shrinkage was delayed by 8 s, reaching a transient minimum at around 1 min, and recovered spontaneously even though CCh was persistently present. In the unstimulated wild-type acinar cells, E (a) was 3.4 ± 0.6 kcal mol(-1) and showed no detectable change after CCh stimulation. In the unstimulated mutant acinar cells, high E (a) value (5.9 ± 0.1 kcal mol(-1)) was detected and showed a minimal decrease after CCh stimulation (5.0 ± 0.3 kcal mol(-1)). These results suggested that AQP5 was the main pathway for water transport in the acinar cells and that it was responsible for the rapid agonist-induced acinar cell shrinkage and also necessary to keep the acinar cell volume reduced during the steady secretion in the wild-type rat.


Asunto(s)
Células Acinares/metabolismo , Acuaporina 5/metabolismo , Permeabilidad de la Membrana Celular , Glándula Parótida/metabolismo , Agua/metabolismo , Células Acinares/citología , Células Acinares/efectos de los fármacos , Animales , Acuaporina 5/agonistas , Acuaporina 5/genética , Carbacol/farmacología , Tamaño de la Célula , Mutación , Glándula Parótida/citología , Ratas , Ratas Mutantes
16.
Medicines (Basel) ; 9(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736248

RESUMEN

A series of 3,5-bis(benzylidene)-1-dichloroacetyl-4-piperidones 1a-l was evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas. Virtually all of the compounds displayed potent cytotoxicity, with 83% of the CC50 values being submicromolar and several CC50 values being in the double digit nanomolar range. The compounds were appreciably less toxic to human HGF, HPLF, and HPC non-malignant cells, which led to some noteworthy selectivity index (SI) figures. From these studies, 1d,g,k emerged as the lead molecules in terms of their potencies and SI values. A Quantitative Structure-Activity Relationship (QSAR) study revealed that cytotoxic potencies and potency-selectivity expression figures increased when the magnitude of the sigma values in the aryl rings was elevated. The modes of action of the representative cytotoxins in Ca9-22 cells were found to include G2/M arrest and stimulation of the cells to undergo mitosis and cause poly(ADP-ribose) polymerase (PARP) and procaspase 3 cleavage.

17.
J Parkinsons Dis ; 12(6): 1863-1880, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35848036

RESUMEN

BACKGROUND: Taste impairments are often accompanied by olfactory impairments in the early stage of Parkinson's disease (PD). The development of animal models is required to elucidate the mechanisms underlying taste impairments in PD. OBJECTIVE: This study was conducted to clarify whether the intranasal administration of rotenone causes taste impairments prior to motor deficits in mice. METHODS: Rotenone was administrated to the right nose of mice once a day for 1 or 4 week(s). In the 1-week group, taste, olfactory, and motor function was assessed before and after a 1-week recovery period following the rotenone administration. Motor function was also continuously examined in the 4-weeks group from 0 to 5 weeks. After a behavioral test, the number of catecholamine neurons (CA-Nos) was counted in the regions responsible for taste, olfactory, and motor function. RESULTS: taste and olfactory impairments were simultaneously observed without locomotor impairments in the 1-week group. The CA-Nos was significantly reduced in the olfactory bulb and nucleus of the solitary tract. In the 4-week group, locomotor impairments were observed from the third week, and a significant reduction in the CA-Nos was observed in the substantia nigra (SN) and ventral tegmental area (VTA) at the fifth week along with the weight loss. CONCLUSION: The intranasal administration of rotenone caused chemosensory and motor impairments in an administration time-period dependent manner. Since chemosensory impairments were expressed prior to the locomotor impairments followed by SN/VTA CA neurons loss, this rotenone administration model may contribute to the clarification of the prodromal symptoms of PD.


Asunto(s)
Trastornos del Olfato , Enfermedad de Parkinson , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Ratones , Trastornos del Olfato/inducido químicamente , Enfermedad de Parkinson/complicaciones , Rotenona , Gusto , Tirosina 3-Monooxigenasa
18.
Magn Reson Med ; 65(4): 1005-12, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21413064

RESUMEN

The toxicity of free Mn(2+) is a bottleneck for the in vivo application of manganese ion enhanced MRI. To reduce free Mn(2+) concentration ([Mn(2+) ]), a low affinity chelate reagent: N,N-bis(2-hydroxyethyl)glycine (bicine) was used. Considering the conditional association constant of Mn-bicine at pH 7.4 (10(2.9) M(-1) ), (i) a 100 mM Mn-bicine solution should contain about 10 mM of free manganese ion, but (ii) free manganese will make up 3/4 of the final plasma concentration (0.5 mM) with an intravenous infusion of 100 mM Mn-bicine. The T(1) relaxivity of Mn-bicine in a 5 mM Mn-bicine solution was estimated as 5 mM(-1) sec(-1) at 24°C, 7 T in a pH range of 6.8-7.5. Mn-bicine demonstrated a tendency for better contractility when employed with an isolated perfused frog heart, compared with MnCl(2) . A venous infusion of 100 mM Mn-bicine (8.3 µmol kg(-1) min(-1) ) showed a minimal decrease and maintained a constant heart rate level and arterial pressure in rats, while rats infused with 100 mM of MnCl(2) showed a significant suppression of the hemodynamic functions. Thus, Mn-bicine appears to be a better choice for maintaining the vital conditions of experimental animals, and may improve the reproducibility of manganese ion enhanced MRI.


Asunto(s)
Quelantes , Glicina/análogos & derivados , Aumento de la Imagen/métodos , Imagen por Resonancia Cinemagnética/métodos , Imagen por Resonancia Magnética/métodos , Manganeso , Animales , Quelantes/química , Medios de Contraste/química , Glicina/química , Iones , Masculino , Manganeso/química , Rana catesbeiana , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Medicines (Basel) ; 8(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206186

RESUMEN

Background: Pyoktanin blue (PB) is used for staining tissues and cells, and it is applied in photodynamic therapy due to its potent bactericidal activity. However, clinical application of PB as an antiviral and antitumor agent has been limited due to its potent toxicity. For clinical application, the antitumor and antiviral activity as well as the neurotoxicity of PB were re-evaluated with a chemotherapeutic index. Methods: Tumor-specificity (TS) was determined by the ratio of CC50 against normal oral cells/oral squamous cell carcinoma (OSCC); neurotoxicity by that of normal oral/neuronal cells; antiviral activity by that of mock-infected/virus-infected cells; and potency-selectivity expression (PSE) by dividing TS by CC50 (OSCC). Results: Antitumor activity of PB (assessed by TS and PSE) was comparable with that of DXR and much higher than that of 5-FU and melphalan. PB induced caspase-3 activation and subG1 cell accumulation in an OSCC cell line (Ca9-22). PB and anticancer drugs showed comparable cytotoxicity against both neuronal cells and OSCC cell lines. PB showed no detectable anti-HIV/HSV activity, in contrast to reverse transferase inhibitors, sulfated glucans, and alkaline extract of leaves of S.P. Conclusions: PB showed first-class anticancer activity and neurotoxicity, suggesting the importance of establishing the safe treatment schedule.

20.
Medicines (Basel) ; 8(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34940290

RESUMEN

A series of 3,5-bis(benzylidene)-4-piperidones 2a-u were prepared as candidate cytotoxic agents. In general, the compounds are highly toxic to human gingival carcinoma (Ca9-22), human squamous carcinoma-2 (HSC-2) and human squamous carcinoma-4 (HSC-4) neoplasms, but less so towards non-malignant human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF) and human pulp cells (HPC), thereby demonstrating tumour-selective toxicity. A further study revealed that most of the compounds in series 2 were more toxic to the human Colo-205 adenocarcinoma cell line (Colo-205), human HT29 colorectal adenocarcinoma cells (HT-29) and human CEM lymphoid cells (CEM) neoplasms than towards non-malignant human foreskin Hs27 fibroblast line (Hs27) cells. The potency of the cytotoxins towards the six malignant cell lines increased as the sigma and sigma star values of the aryl substituents rose. Attempts to condense various aryl aldehydes with 2,2,6,6-tetramethyl-4-piperidone led to the isolation of some 1,5-diaryl-1,4-pentadien-3-ones. The highest specificity for oral cancer cells was displayed by 2e and 2r. In the case of 2r, its selective toxicity exceeded that of doxorubicin and melphalan. The enones 2k, m, o have the highest SI values towards colon cancer and leukemic cells. Both 2e,r inhibited mitosis and increased the subG1 population (with a transient increase in G2/M phase cells). Slight activation of caspase-3, based on the cleavage of poly(ADP-ribose)polymerase (PARP) and procaspase 3, was detected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA