Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Sci ; 115(4): 1333-1345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320747

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. However, drug discovery for PDAC treatment has proven complicated, leading to stagnant therapeutic outcomes. Here, we identify Glycogen synthase kinase 3 (GSK3) as a therapeutic target through a whole-body genetic screening utilizing a '4-hit' Drosophila model mimicking the PDAC genotype. Reducing the gene dosage of GSK3 in a whole-body manner or knocking down GSK3 specifically in transformed cells suppressed 4-hit fly lethality, similar to Mitogen-activated protein kinase kinase (MEK), the therapeutic target in PDAC we have recently reported. Consistently, a combination of the GSK3 inhibitor CHIR99021 and the MEK inhibitor trametinib suppressed the phosphorylation of Polo-like kinase 1 (PLK1) as well as the growth of orthotopic human PDAC xenografts in mice. Additionally, reducing PLK1 genetically in 4-hit flies rescued their lethality. Our results reveal a therapeutic vulnerability in PDAC that offers a treatment opportunity for patients by inhibiting multiple targets.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Quinasas de Proteína Quinasa Activadas por Mitógenos , Glucógeno Sintasa Quinasa 3/metabolismo , Transducción de Señal , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo
2.
Immunity ; 38(6): 1105-15, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23791645

RESUMEN

How hematopoietic stem cells (HSCs) produce particular lineages is insufficiently understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was markedly induced with lymphoid lineage specification. HSCs from Satb1-deficient mice were defective in lymphopoietic activity in culture and failed to reconstitute T lymphopoiesis in wild-type recipients. Furthermore, Satb1 transduction of HSCs and embryonic stem cells robustly promoted their differentiation toward lymphocytes. Whereas genes that encode Ikaros, E2A, and Notch1 were unaffected, many genes involved in lineage decisions were regulated by Satb1. Satb1 expression was reduced in aged HSCs with compromised lymphopoietic potential, but forced Satb1 expression partly restored that potential. Thus, Satb1 governs the initiating process central to the replenishing of lymphoid lineages. Such activity in lymphoid cell generation may be of clinical importance and useful to overcome immunosenescence.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Linfopoyesis , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Linfocitos T/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Supervivencia Celular/genética , Células Cultivadas , Senescencia Celular/genética , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica , Humanos , Linfopoyesis/genética , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transgenes/genética
3.
J Environ Manage ; 317: 115378, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35636116

RESUMEN

Climate change is expected to exacerbate drought conditions over many global regions. However, the future risk posed by droughts depends not only on the climate-induced changes but also on the changes in societal exposure and vulnerability to droughts. Here we illustrate how the consideration of human vulnerability alters global drought risk associated with runoff (hydrological) and soil moisture (agriculture) droughts during the 21st-century. We combine the changes in drought frequency, population growth, and human development as a proxy of vulnerability to project global drought risk under plausible climate and socioeconomic development pathways. Results indicate that the shift toward a pathway of high greenhouse gas emissions and socioeconomic inequality leads to i) increased population exposure to runoff and soil moisture droughts by 81% and seven folds, respectively, and ii) a stagnation of human development. These consequences are more pronounced for populations living in low than in very high human development countries. In particular, Sub-Saharan Africa and South Asia, where the majority of the world's less developed countries are located, fare the worst in terms of future drought risk. The disparity in risk between low and very high human development countries can be substantially reduced in the presence of a shift toward a world of rapid and sustainable development that actively reduces social inequality and emissions. Our results underscore the importance of rapid human development in hotspots of drought risk where effective adaptation is most needed to reduce future drought impacts.


Asunto(s)
Cambio Climático , Sequías , Aclimatación , Agricultura , Humanos , Suelo
4.
Nano Lett ; 20(9): 6520-6525, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787170

RESUMEN

Ongoing efforts in materials science have resulted in linear block copolymer systems that generate nanostructures via the phase separation of immiscible blocks; however, such systems are limited with regard to their domain miniaturization and lack of orientation control. We overcome these limitations through the bicyclic topological alteration of a block copolymer system. Grazing incidence X-ray scattering analysis of nanoscale polymer films revealed that bicyclic topologies achieve 51.3-72.8% reductions in domain spacing when compared against their linear analogue, which is more effective than the theoretical predictions for conventional cyclic topologies. Moreover, bicyclic topologies achieve unidirectional orientation and a morphological transformation between lamellar and cylindrical domains with high structural integrity. When the near-equivalent volume fraction between the blocks is considered, the formation of hexagonally packed cylindrical domains is particularly noteworthy. Bicyclic topological alteration is therefore a powerful strategy for developing advanced nanostructured materials for microelectronics, displays, and membranes.

5.
Cancer Sci ; 111(7): 2248-2258, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32426941

RESUMEN

Myeloid-derived suppressor cells (MDSCs) play a crucial role in immunosuppression in tumor-bearing hosts. MDSCs express arginase-I and indoleamine 2,3-dioxygenase; they suppress T-cell function by reducing the levels of l-arginine and l-tryptophan, respectively. We examined the anticancer effects of supplementation of these amino acids in CT26 colon carcinoma-bearing mice. Oral supplementation of l-arginine or l-tryptophan (30 mg/mouse) did not affect tumor growth, whereas oral supplementation of d-arginine was lethal. Supplementation of l-arginine showed a tendency to augment the efficacy of cyclophosphamide (CP). CP reduced the proportions of granulocytic MDSCs and increased the proportions of monocytic MDSCs in the spleen and tumor tissues of CT26-bearing mice. l-Arginine supplementation alone did not affect the MDSC subsets. CP treatment tended to reduce the plasma levels of l-arginine in CT26-bearing mice and significantly increased the number of tumor-infiltrating CD8+ T cells. In addition, l-arginine supplementation significantly increased the proportions of tumor peptide-specific CD8+ T cells in draining lymph nodes. Importantly, additional supplementation of l-arginine significantly increased the number of cured mice that were treated with CP and anti-PD-1 antibody. Totally, l-arginine supplementation shows promise for boosting the therapeutic efficacy of chemoimmunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antineoplásicos/farmacología , Arginina/administración & dosificación , Suplementos Dietéticos , Aminoácidos/sangre , Animales , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclofosfamida/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Citometría de Flujo , Ratones , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Biochem Biophys Res Commun ; 495(3): 2338-2343, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29274779

RESUMEN

Information of myeloid lineage-related antigen on hematopoietic stem/progenitor cells (HSPCs) is important to clarify the mechanisms regulating hematopoiesis, as well as for the diagnosis and treatment of myeloid malignancies. We previously reported that special AT-rich sequence binding protein 1 (SATB1), a global chromatin organizer, promotes lymphoid differentiation from HSPCs. To search a novel cell surface molecule discriminating early myeloid and lymphoid differentiation, we performed microarray analyses comparing SATB1-overexpressed HSPCs with mock-transduced HSPCs. The results drew our attention to membrane-spanning 4-domains, subfamily A, member 3 (Ms4a3) as the most downregulated molecule in HSPCs with forced overexpression of SATB1. Ms4a3 expression was undetectable in hematopoietic stem cells, but showed a concomitant increase with progressive myeloid differentiation, whereas not only lymphoid but also megakaryocytic-erythrocytic progenitors were entirely devoid of Ms4a3 expression. Further analysis revealed that a subset of CD34+CD38+CD33+ progenitor population in human adult bone marrow expressed MS4A3, and those MS4A3+ progenitors only produced granulocyte/macrophage colonies, losing erythroid colony- and mixed colony-forming capacity. These results suggest that cell surface expression of MS4A3 is useful to distinguish granulocyte/macrophage lineage-committed progenitors from other lineage-related ones in early human hematopoiesis. In conclusion, MS4A3 is useful to monitor early stage of myeloid differentiation in human hematopoiesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Soft Matter ; 13(18): 3422-3430, 2017 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-28436513

RESUMEN

Self-motion of an oil droplet was investigated on a sodium dodecyl sulfate (SDS) aqueous phase. With an increase in the concentration of SDS, the nature of self-motion of a butyl salicylate (BS) droplet as the oil droplet was changed, i.e., no motion, reciprocation with a small amplitude, and reciprocation with a large amplitude, which was a value close to the half-length of the chamber. The interfacial tension, contact angle, and convective flow around the droplet were measured to clarify the driving force of reciprocation. The mechanisms of two types of reciprocation and mode-change were discussed in terms of the adsorption of SDS molecules at the BS/water interface and the dissolution of a mixture of BS and SDS into the bulk phase, the convective flow, and the Young's equation. The features of reciprocation and mode-change depending on the concentration of SDS were qualitatively reproduced by numerical calculation based on an equation of motion and the kinetics of SDS and BS at the air/aqueous interface.

8.
Proc Natl Acad Sci U S A ; 111(9): 3262-7, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344266

RESUMEN

Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.


Asunto(s)
Cambio Climático , Sequías/estadística & datos numéricos , Hidrodinámica , Modelos Teóricos , Simulación por Computador , Predicción , Geografía , Incertidumbre
9.
Proc Natl Acad Sci U S A ; 111(9): 3257-61, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344290

RESUMEN

Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.


Asunto(s)
Cambio Climático , Inundaciones/estadística & datos numéricos , Hidrodinámica , Modelos Teóricos , Ríos , Simulación por Computador , Predicción
10.
Proc Natl Acad Sci U S A ; 111(9): 3239-44, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344283

RESUMEN

We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.


Asunto(s)
Riego Agrícola/métodos , Agricultura/métodos , Cambio Climático , Modelos Teóricos , Abastecimiento de Agua/estadística & datos numéricos , Riego Agrícola/economía , Agricultura/economía , Dióxido de Carbono/análisis , Simulación por Computador , Predicción
11.
Proc Natl Acad Sci U S A ; 111(9): 3245-50, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344289

RESUMEN

Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.


Asunto(s)
Cambio Climático , Sequías/estadística & datos numéricos , Modelos Teóricos , Crecimiento Demográfico , Abastecimiento de Agua/estadística & datos numéricos , Predicción , Temperatura
12.
J Immunol ; 189(1): 200-10, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22649198

RESUMEN

Whereas most hematopoietic stem cells (HSC) are quiescent in homeostasis, they actively proliferate in response to bone marrow (BM) injury. Signals from the BM microenvironment are thought to promote entry of HSC into the cell cycle. However, it has been cumbersome to assess cycle status of viable HSC and thus explore unique features associated with division. In this study, we show that expression of endothelial cell-selective adhesion molecule (ESAM) can be a powerful indicator of HSC activation. ESAM levels clearly mirrored the shift of HSC between quiescence and activation, and it was prominent in comparison with other HSC-related Ags. ESAM(hi) HSC were actively dividing, but had surprisingly high long-term reconstituting capacity. Immunohistochemical analyses showed that most ESAM(hi) HSC were located near vascular endothelium in the BM after 5-fluorouracil treatment. To determine the importance of ESAM in the process of BM recovery, ESAM knockout mice were treated with 5-fluorouracil and their hematopoietic reconstruction was examined. The ESAM deficiency caused severe and prolonged BM suppression, suggesting that ESAM is functionally indispensable for HSC to re-establish homeostatic hematopoiesis. With respect to intracellular regulators, NF-κB and topoisomerase II levels correlated with the ESAM upregulation. Thus, our data demonstrate that the intensity of ESAM expression is useful to trace activated HSC and to understand molecular events involved in stem cell states.


Asunto(s)
Antígenos/fisiología , Moléculas de Adhesión Celular/fisiología , Diferenciación Celular/inmunología , Endotelio Vascular/inmunología , Células Madre Hematopoyéticas/inmunología , Fase de Descanso del Ciclo Celular/inmunología , Animales , Antígenos/biosíntesis , Antígenos/genética , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/deficiencia , Diferenciación Celular/genética , Línea Celular , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Fase de Descanso del Ciclo Celular/genética
13.
PNAS Nexus ; 3(8): pgae290, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114575

RESUMEN

The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.

14.
Nat Methods ; 7(1): 61-6, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19946277

RESUMEN

Several applications of pluripotent stem cell (PSC)-derived cardiomyocytes require elimination of undifferentiated cells. A major limitation for cardiomyocyte purification is the lack of easy and specific cell marking techniques. We found that a fluorescent dye that labels mitochondria, tetramethylrhodamine methyl ester perchlorate, could be used to selectively mark embryonic and neonatal rat cardiomyocytes, as well as mouse, marmoset and human PSC-derived cardiomyocytes, and that the cells could subsequently be enriched (>99% purity) by fluorescence-activated cell sorting. Purified cardiomyocytes transplanted into testes did not induce teratoma formation. Moreover, aggregate formation of PSC-derived cardiomyocytes through homophilic cell-cell adhesion improved their survival in the immunodeficient mouse heart. Our approaches will aid in the future success of using PSC-derived cardiomyocytes for basic and clinical applications.


Asunto(s)
Separación Celular/métodos , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Coloración y Etiquetado/métodos , Animales , Animales Recién Nacidos , Callithrix , Diferenciación Celular , Trasplante de Células , Células Cultivadas , Embrión de Mamíferos/citología , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Colorantes Fluorescentes/análisis , Corazón/embriología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Ratas , Rodaminas/análisis
15.
Zoolog Sci ; 30(3): 217-23, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23480382

RESUMEN

Fish scales are a form of calcified tissue similar to that found in human bone. In medaka scales, we detected both osteoblasts and osteoclasts and subsequently developed a new scale assay system. Using this system, we analyzed the osteoblastic and osteoclastic responses under 2-, 3-, and 4-gravity (G) loading by both centrifugation and vibration. After loading for 10 min, the scales from centrifugal and vibration loading were incubated for 6 and 24 hrs, respectively, after which the osteoblastic and osteoclastic activities were measured. Osteoblastic activity significantly increased under 2- to 4-G loading by both centrifugation and vibration. In contrast, we found that osteoclastic activity significantly decreased under 2- and 3-G loading in response to both centrifugation and vibration. Under 4-G loading, osteoclastic activity also decreased on centrifugation, but significantly increased under 4-G loading by vibration, concomitant with markedly increased osteoblastic activity. Expression of the receptor activator of the NF-κB ligand (RANKL), an activation factor of osteoclasts expressed in osteoblasts, increased significantly under 4-G loading by vibration but was unchanged by centrifugal loading. A protein sequence similar to osteoprotegerin (OPG), which is known as an osteoclastogenesis inhibitory factor, was found in medaka using our sequence analysis. The ratio of RANKL/OPG-like mRNAs in the vibration-loaded scales was significantly higher than that in the control scales, although there was no difference between centrifugal loaded scales and the control scales. Accordingly, medaka scales provide a useful model by which to analyze bone metabolism in response to physical strain.


Asunto(s)
Hipergravedad , Oryzias/anatomía & histología , Osteoblastos/fisiología , Osteoclastos/fisiología , Secuencia de Aminoácidos , Animales , Fenómenos Biomecánicos , Regulación de la Expresión Génica/fisiología , Osteoblastos/citología , Osteoclastos/citología , Osteoprotegerina/genética , Osteoprotegerina/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-23632157

RESUMEN

Zebrafish scales consist of bone-forming osteoblasts, bone-resorbing osteoclasts, and calcified bone matrix. To elucidate the underlying molecular mechanism of the effects induced by dynamic and static acceleration, we investigated the scale osteoblast- and osteoclast-specific marker gene expression involving osteoblast-osteoclast communication molecules. Osteoblasts express RANKL, which binds to the osteoclast surface receptor, RANK, and stimulates bone resorption. OPG, on the other hand, is secreted by osteoblast as a decoy receptor for RANKL, prevents RANKL from binding to RANK and thus prevents bone resorption. Therefore, the RANK-RANKL-OPG pathway contributes to the regulation of osteoclastogenesis by osteoblasts. Semaphorin 4D, in contrast, is expressed on osteoclasts, and binding to its receptor Plexin-B1 on osteoblasts results in suppression of bone formation. In the present study, we found that both dynamic and static acceleration at 3.0×g decreased RANKL/OPG ratio and increased osteoblast-specific functional mRNA such as alkaline phosphatase, while static acceleration increased and dynamic acceleration decreased osteoclast-specific mRNA such as cathepsin K. Static acceleration increased semaphorin 4D mRNA expression, while dynamic acceleration had no effect. The results of the present study indicated that osteoclasts have predominant control over bone metabolism via semaphorin 4D expression induced by static acceleration at 3.0×g.


Asunto(s)
Aceleración , Estructuras Animales/citología , Estructuras Animales/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Pez Cebra/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Regulación de la Expresión Génica , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Cancer Res ; 83(16): 2704-2715, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37378549

RESUMEN

Significant progress has been made in understanding the pathogenesis of pancreatic ductal adenocarcinoma (PDAC) by generating and using murine models. To accelerate drug discovery by identifying novel therapeutic targets on a systemic level, here we generated a Drosophila model mimicking the genetic signature in PDAC (KRAS, TP53, CDKN2A, and SMAD4 alterations), which is associated with the worst prognosis in patients. The '4-hit' flies displayed epithelial transformation and decreased survival. Comprehensive genetic screening of their entire kinome revealed kinases including MEK and AURKB as therapeutic targets. Consistently, a combination of the MEK inhibitor trametinib and the AURKB inhibitor BI-831266 suppressed the growth of human PDAC xenografts in mice. In patients with PDAC, the activity of AURKB was associated with poor prognosis. This fly-based platform provides an efficient whole-body approach that complements current methods for identifying therapeutic targets in PDAC. SIGNIFICANCE: Development of a Drosophila model mimicking genetic alterations in human pancreatic ductal adenocarcinoma provides a tool for genetic screening that identifies MEK and AURKB inhibition as a potential treatment strategy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Drosophila , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Aurora Quinasa B , Neoplasias Pancreáticas
18.
Nat Commun ; 13(1): 3287, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764606

RESUMEN

Droughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.


Asunto(s)
Sequías , Gases de Efecto Invernadero , Cambio Climático , Hidrología , Recursos Hídricos
19.
J Biol Chem ; 285(41): 31774-82, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20663870

RESUMEN

BCR-ABL is a causative tyrosine kinase (TK) of chronic myelogenous leukemia (CML). In CML patients, although myeloid cells are remarkably proliferating, erythroid cells are rather decreased and anemia is commonly observed. This phenotype is quite different from that observed in polycythemia vera (PV) caused by JAK2 V617F, whereas both oncogenic TKs activate common downstream molecules at the level of hematopoietic stem cells (HSCs). To clarify this mechanism, we investigated the effects of BCR-ABL and JAK2 V617F on erythropoiesis. Enforced expression of BCR-ABL but not of JAK2 V617F in murine LSK (Lineage(-)Sca-1(hi)CD117(hi)) cells inhibited the development of erythroid cells. Among several signaling molecules downstream of BCR-ABL, an active mutant of N-Ras (N-RasE12) but not of STAT5 or phosphatidylinositol 3-kinase (PI3-K) inhibited erythropoiesis, while N-RasE12 enhanced the development of myeloid cells. BCR-ABL activated Ras signal more intensely than JAK2 V617F, and inhibition of Ras by manumycin A, a farnesyltransferase inhibitor, ameliorated erythroid colony formation of CML cells. As for the mechanisms of Ras-induced suppression of erythropoiesis, we found that GATA-1, an erythroid-specific transcription factor, blocked Ras-mediated mitogenic signaling at the level of MEK through the direct interaction. Furthermore, enforced expression of N-RasE12 in LSK cells derived from p53-, p16(INK4a)/p19(ARF)-, and p21(CIP1/WAF1)-null/wild-type mice revealed that suppressed erythroid cell growth by N-RasE12 was restored only by p21(CIP1/WAF1) deficiency, indicating that a cyclin-dependent kinase (CDK) inhibitor, p21(CIP1/WAF1), plays crucial roles in Ras-induced suppression of erythropoiesis. These data would, at least partly, explain why respective oncogenic TKs cause different disease phenotypes.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Eritropoyesis , Proteínas de Fusión bcr-abl/metabolismo , Janus Quinasa 2/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Mutación Missense , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sustitución de Aminoácidos , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidores Enzimáticos/farmacología , Proteínas de Fusión bcr-abl/genética , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Mutantes , Células Mieloides/metabolismo , Células 3T3 NIH , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Polienos/farmacología , Alcamidas Poliinsaturadas/farmacología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción STAT5 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
ACS Macro Lett ; 10(7): 811-818, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549184

RESUMEN

Among many properties of cyclic block copolymers, the notable domain spacing (d-spacing) reduction offers nonlinear topology as an effective tool for developing block copolymers for nanolithography. However, the current consensus regarding the topology-morphology correlation is ambiguous and in need of more studies. Here we present the morphological investigation on nanoscale films of cyclic and tadpole-shaped poly(n-decyl glycidyl ether-block-2-(2-(2-methoxyethoxy)ethoxy)ethyl glycidyl ether)s and their linear counterpart via synchrotron grazing-incidence X-ray scattering. All copolymers form phase-separated nanostructures, in which only the nonlinear copolymers form highly ordered and unidirectional nanostructures. Additionally, d-spacings of cyclic and tadpole-shaped block copolymers are 49.3-53.7% and 25.0-32.5% shorter than that of their linear counterpart, respectively, exhibiting greater or comparable d-spacing reductions against the experimentally and theoretically achieved values from the literature. Overall, this study demonstrates that cyclic and tadpole topologies can be utilized in developing materials with miniaturized dimensions, high structural ordering, and unidirectional orientation for various nanotechnology applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA