RESUMEN
The ubiquitous presence of microplastics (MP) in aquatic ecosystems can affect organisms and communities in multiple ways. While MP research on aquatic organisms has primarily focused on marine ecosystems and laboratory experiments, the community-level effects of MP in freshwaters, especially in lakes, are poorly understood. To examine the impact of MP on freshwater lake ecosystems, we conducted the first in situ community-level mesocosm experiment testing the effects of MP on a model food web with zooplankton as main herbivores, odonate larvae as predators, and chironomid larvae as detritivores for seven weeks. The mesocosms were exposed to a mixture of the most abundant MP polymers found in freshwaters, added at two different concentrations in a single pulse to the water surface, water column and sediment. Water column MP concentrations declined sharply during the first two weeks of the experiment. Contrary to expectations, MP ingestion by zooplankton was low and limited mainly to large-bodied Daphnia, causing a decrease in biomass. Biomass of the other zooplankton taxa did not decrease. Presence of MP in the faecal pellets of odonate larvae that fed on zooplankton was indicative of a trophic transfer of MP. The results demonstrated that MP ingestion varies predictably with MP size, as well as body size and feeding preference of the organism, which can be used to predict the rates of transfer and further effects of MP on freshwater food webs. For chironomids, MP had only a low, short-term impact on emergence patterns while their wing morphology was significantly changed. Overall, the impact of MP exposure on the experimental food web and cross-ecosystem biomass transfer was lower than expected, but the experiment provided the first in situ observation of MP transfer to terrestrial ecosystems by emerging chironomids.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Cadena Alimentaria , Lagos , Plásticos , Agua , Contaminantes Químicos del Agua/análisis , ZooplanctonRESUMEN
The effect of microplastics (MP) exposure on the chironomid species Chironomus riparius Meigen, 1804 was investigated using the OECD sediment and water toxicity test. Chironomid larvae were exposed to an environmentally relevant low microplastics concentration (LC), a high microplastics concentration (HC) and a control (C). The LC was 0.007 g m-2 on the water surface + 2 g m-3 in the water column + 8 g m-2 in the sediment, and the HC was 10 X higher than this for each exposure. The size of the majority of the manufactured microplastic pellets varied between 20 and 100 µm. The MP mixture consisted of: polyethylene-terephtalate (PET), polystyrene (PS), polyvinyl-chloride (PVC) and polyamide (PA) in a ratio of 45%: 15%: 20%: 20%, respectively, for the sediment exposure; 100% polyethylene for the water column exposure; and 50% polyethylene: 50% polypropylene for the water surface exposure. Different endpoints were monitored, including morphological changes in the mandibles and mentums of 4th instar larvae, morphological changes in the wings, mortality, emergence ratio, and developmental time. A geometric morphometric analysis showed a tendency toward widening of the wings, elongation of the mentums and changing the shape of the mandibles in specimens exposed to both concentrations of microplastics. The development time of C. riparius was significantly prolonged by the MP treatment: 13.8 ± 0.5; 14.4 ± 0.6; and 15.3 ± 0.4 days (mean ± SD) in the C, LC, and HC, respectively. This study indicates that even environmentally relevant concentrations of MP mixture have a negative influence on C. riparius, especially at the larval stage.