Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biochem ; 113(3): 946-55, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22034016

RESUMEN

Pathological bone destruction (osteolysis) is a hallmark of many bone diseases including tumor metastasis to bone, locally osteolytic giant cell tumor (GCT) of bone, and Paget's disease. Paclitaxel is frequently prescribed in the treatment of several malignant tumors where it has been shown to exert beneficial effects on bone lesions. However, the mechanism(s) through which paclitaxel regulates osteoclast formation and function remain ill defined. In the present study, we demonstrate that paclitaxel dose-dependently inhibits receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis in both RAW264.7 cells and mouse bone marrow macrophage (BMM) systems. In addition, paclitaxel treatment reduces the bone resorptive activity of human osteoclasts derived from GCT of bone, and attenuates lipopolysaccharide (LPS)-induced osteolysis in a mouse calvarial model. Complementary cellular and biochemical analyses revealed that paclitaxel induces mitotic arrest of osteoclastic precursor cells. Furthermore, luciferase reporter gene assays and western blot analysis indicate that paclitaxel modulates key RANKL-induced activation pathways that are essential to osteoclast formation including NF-κB and ERK. Collectively, our findings demonstrate a role for paclitaxel in the regulation of osteoclast formation and function and uncover potential mechanism(s) through which paclitaxel alleviates pathological osteolysis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resorción Ósea , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Paclitaxel/farmacología , Ligando RANK/antagonistas & inhibidores , Animales , Neoplasias Óseas/patología , Línea Celular , Citoesqueleto/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Tumor Óseo de Células Gigantes/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Mitosis/efectos de los fármacos , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoclastos/ultraestructura , Osteólisis , Ligando RANK/farmacología
2.
J Exp Med ; 197(4): 503-13, 2003 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-12591907

RESUMEN

The unique tyrosine kinase binding (TKB) domain of Cbl targets phosphorylated tyrosines on activated protein tyrosine kinases (PTKs); this targeting is considered essential for Cbl proteins to negatively regulate PTKs. Here, a loss-of-function mutation (G304E) in the c-Cbl TKB domain, first identified in Caenorhabditis elegans, was introduced into a mouse and its effects in thymocytes and T cells were studied. In marked contrast to the c-Cbl knockout mouse, we found no evidence of enhanced activity of the ZAP-70 PTK in thymocytes from the TKB domain mutant mouse. This finding contradicts the accepted mechanism of c-Cbl-mediated negative regulation, which requires TKB domain targeting of phosphotyrosine 292 in ZAP-70. However, the TKB domain mutant mouse does show aspects of enhanced signaling that parallel those of the c-Cbl knockout mouse, but these involve the constitutive activation of Rac and not enhanced PTK activity. Furthermore, the enhanced signaling in CD4(+)CD8(+) double positive thymocytes appears to be compensated by the selective down-regulation of CD3 on mature thymocytes and peripheral T cells from both strains of mutant c-Cbl mice.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Linfocitos T/fisiología , Ubiquitina-Proteína Ligasas , Animales , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Sitios de Unión , Complejo CD3/análisis , Antígenos CD5/análisis , Receptores ErbB/fisiología , Femenino , Proteínas del Helminto/fisiología , Lectinas Tipo C , Masculino , Proteínas de la Membrana/análisis , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Proto-Oncogénicas c-cbl , Receptores de Antígenos de Linfocitos T/análisis , Timo/enzimología , Proteína Tirosina Quinasa ZAP-70 , Proteínas de Unión al GTP rac/metabolismo , Dominios Homologos src
3.
Mol Biol Cell ; 14(11): 4605-17, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12960437

RESUMEN

A number of key cellular functions, such as morphological differentiation and cell motility, are closely associated with changes in cytoskeletal dynamics. Many of the principal signaling components involved in actin cytoskeletal dynamics have been identified, and these have been shown to be critically involved in cell motility. In contrast, signaling to microtubules remains relatively uncharacterized, and the importance of signaling pathways in modulation of microtubule dynamics has so far not been established clearly. We report here that the Rho-effector ROCK and the multiadaptor proto-oncoprotein Cbl can profoundly affect the microtubule cytoskeleton. Simultaneous inhibition of these two signaling molecules induces a dramatic rearrangement of the microtubule cytoskeleton into microtubule bundles. The formation of these microtubule bundles, which does not involve signaling by Rac, Cdc42, Crk, phosphatidylinositol 3-kinase, and Abl, is sufficient to induce distinct neurite-like extensions in NIH 3T3 fibroblasts, even in the absence of microfilaments. This novel microtubule-dependent function that promotes neurite-like extensions is not dependent on net changes in microtubule polymerization or stabilization, but rather involves selective elongation and reorganization of microtubules into long bundles.


Asunto(s)
Extensiones de la Superficie Celular/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Oncogénicas de Retroviridae/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiología , Amidas/farmacología , Animales , Extensiones de la Superficie Celular/fisiología , Clonación Molecular , Citoesqueleto/fisiología , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente , Genes abl/fisiología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Microtúbulos/fisiología , Células 3T3 NIH , Proteína Oncogénica v-cbl , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt , Piridinas/farmacología , Proteínas Oncogénicas de Retroviridae/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Quinasas Asociadas a rho
4.
Mol Cancer Ther ; 4(6): 876-84, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15956245

RESUMEN

Because cell proliferation is subject to checkpoint-mediated regulation of the cell cycle, pharmacophores that target cell cycle checkpoints have been used clinically to treat human hyperproliferative disorders. It is shown here that the flavoprotein inhibitor diphenyleneiodionium can block cell proliferation by targeting of cell cycle checkpoints. Brief exposure of mitotically arrested cells to diphenyleneiodonium induces a loss of the mitotic cell morphology, and this corresponds with a decrease in the levels of the mitotic markers MPM2 and phospho-histone H3, as well as a loss of centrosome maturation, spindle disassembly, and redistribution of the chromatin remodeling helicase ATRX. Surprisingly, this mitotic exit resulted in a tetraploidization that persisted long after drug release. Analogously, brief exposure to diphenyleneiodonium also caused prolonged arrest in G(1) phase. By contrast, diphenyleneiodonium exposure did not abrogate S phase, although it did result in a subsequent block of G(2) cell cycle progression. This indicates that diphenyleneiodonium selectively targets components of the cell cycle, thereby either causing cell cycle arrest, or checkpoint override followed by cell cycle arrest. These irreversible effects of diphenyleneiodonium on the cell cycle may underlie its potent antiproliferative activity.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Compuestos Onio/farmacología , Biomarcadores , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Humanos , Metafase/efectos de los fármacos , Mitosis/efectos de los fármacos , Nocodazol/metabolismo , Paclitaxel/farmacología , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
5.
Mol Cancer Ther ; 3(10): 1229-37, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15486190

RESUMEN

Because proliferation of eukaryotic cells requires cell cycle-regulated chromatid separation by the mitotic spindle, it is subject to regulation by mitotic checkpoints. To determine the mechanism of the antiproliferative activity of the flavoprotein-specific inhibitor diphenyleneiodonium (DPI), I have examined its effect on the cell cycle and mitosis. Similar to paclitaxel, exposure to DPI causes an accumulation of cells with a 4N DNA content. However, unlike the paclitaxel-mediated mitotic block, DPI-treated cells are arrested in the cell cycle prior to mitosis. Although DPI-treated cells can arrest with fully separated centrosomes at opposite sides of the nucleus, these centrosomes fail to assemble mitotic spindle microtubules and they do not accumulate the Thr(288) phosphorylated Aurora-A kinase marker of centrosome maturation. In contrast with paclitaxel-arrested cells, DPI impairs cyclin B1 accumulation. Release from DPI permits an accumulation of cyclin B1 and progression of the cells into mitosis. Conversely, exposure of paclitaxel-arrested mitotic cells to DPI causes a precipitous drop in cyclin B and Thr(288) phosphorylated Aurora-A levels and leads to mitotic catastrophe in a range of cancerous and noncancerous cells. Hence, the antiproliferative activity of DPI reflects a novel inhibitory mechanism of cell cycle progression that can reverse spindle checkpoint-mediated cell cycle arrest.


Asunto(s)
Ciclina B/biosíntesis , Regulación hacia Abajo , Flavoproteínas/antagonistas & inhibidores , Fase G2 , Mitosis , Compuestos Onio/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Aurora Quinasa A , Aurora Quinasas , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cromátides/metabolismo , Ciclina B/metabolismo , Ciclina B1 , ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Microscopía Confocal , Microscopía Fluorescente , Microscopía de Contraste de Fase , Células 3T3 NIH , Paclitaxel/farmacología , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Ratas , Especies Reactivas de Oxígeno/metabolismo , Huso Acromático/metabolismo , Treonina/química , Factores de Tiempo , Proteínas de Xenopus
6.
J Cell Biochem ; 98(1): 102-14, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16365878

RESUMEN

Microtubule drugs, which block cell cycle progression through mitosis, have seen widespread use in cancer chemotherapies. Although microtubules are subject to regulation by signal transduction mechanisms, their pharmacological modulation has so far relied on compounds that bind to the tubulin subunit. A new microtubule pharmacophore, diphenyleneiodonium, causing disassembly of the microtubule cytoskeleton is described here. Although this synthetic compound does not affect the assembly state of purified microtubules, it profoundly suppresses microtubule assembly in vivo, causes paclitaxel-stabilized microtubules to cluster around the centrosomes, and selectively disassembles dynamic microtubules. Similar to other microtubule drugs, this new pharmacophore blocks mitotic spindle assembly and mitotic cell division.


Asunto(s)
Fibroblastos/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Moduladores de la Mitosis/farmacología , Compuestos Onio/farmacología , Prometafase/efectos de los fármacos , Moduladores de Tubulina/farmacología , Animales , Línea Celular , Inhibidores de Crecimiento/síntesis química , Inhibidores de Crecimiento/farmacología , Moduladores de la Mitosis/síntesis química , Compuestos Onio/síntesis química , Ratas
7.
J Cell Sci ; 116(Pt 3): 463-73, 2003 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-12508108

RESUMEN

The induction of protein tyrosine kinase signaling pathways is a principal mechanism for promoting cellular activation. Biochemical and genetic analyses have implicated the multi-adaptor proto-oncogene protein Cbl as a key negative regulator of activated protein tyrosine kinases. By inhibiting the function of Cbl as a multi-domain adaptor protein, through expression of a truncated form (480-Cbl), we demonstrate that Cbl is a potent negative regulator of actin assembly in response to receptor tyrosine kinase (RTK) activation. Expression of 480-Cbl dramatically enhances RTK-dependent induction of actin dorsal ruffles, which correlates with a pronounced increase in Rac activation. By contrast, mitogenic signaling by RTK targets, such as PI 3-kinase and MAP kinases, as well as RTK-mediated tyrosine phosphorylation do not appear to be affected by 480-Cbl expression. Further, we determined that Cbl undergoes a striking RTK-activation-dependent translocation to sites of active actin dorsal ruffle nucleation. Hence, the selective regulation of RTK signaling to the actin cytoskeleton appears to result from recruitment of signaling proteins on a Cbl template bound to the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Células Eucariotas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Oncogénicas de Retroviridae/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/metabolismo , Células 3T3 , Animales , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Peso Molecular , Mutación/genética , Proteína Oncogénica v-cbl , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/fisiología , Proteínas Oncogénicas de Retroviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA