Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neuroendocrinology ; 113(2): 168-178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34438401

RESUMEN

The hypothalamo-neurohypophysial system (HNS) is a brain peptidergic neurosecretory apparatus which is composed of arginine vasopressin (AVP) and oxytocin (OXT) magnocellular neurones and their neuronal processes in the posterior pituitary (PP). In response to specific stimuli, AVP and OXT are secreted into the systemic circulation at the neurovascular interface of the PP, where they act as hormones, but they can also behave as neurotransmitters when released at the somatodendritic compartment or by axon collaterals to other brain regions. Because these peptides are crucial for several physiological processes, including fluid homoeostasis and reproduction, it is of great importance to map the HNS connectome in its entirety in order to understand its functions. In recent years, advances in imaging technologies have provided considerable new information about the HNS. These approaches include the use of reporter proteins under the control of specific promoters, viral tracers, brain-clearing methods, genetically encoded indicators, sniffer cells, mass spectrometry imaging, and spatially resolved transcriptomics. In this review, we illustrate how these latest approaches have enhanced our understanding of the structure and function of the HNS and how they might contribute further in the coming years.


Asunto(s)
Neurohipófisis , Neurohipófisis/metabolismo , Oxitocina/metabolismo , Neuronas/metabolismo , Arginina Vasopresina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo
2.
Opt Express ; 30(2): 754-767, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209259

RESUMEN

We present a simple, continuous, cavity-enhanced optical absorption measurement technique based on high-bandwidth Pound-Drever-Hall (PDH) sideband locking. The technique provides a resonant amplitude quadrature readout that can be mapped onto the cavity's internal loss rate and is naturally compatible with weak probe beams. With a proof-of-concept 5-cm-long Fabry-Perot cavity, we measure an absorption sensitivity ∼10-10cm-1/Hz from 30 kHz to 1 MHz, and a minimum value of 6.6×10-11cm-1/Hz at 100 kHz, with 38 µW collected from the cavity's circulating power.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA