Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Cell Int ; 24(1): 29, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218884

RESUMEN

PURPOSE: Platinum-based drugs are cytotoxic drugs commonly used in cancer treatment. They cause DNA damage, effects of which on chromatin and cellular responses are relatively well described. Yet, the nuclear stress responses related to RNA processing are incompletely known and may be relevant for the heterogeneity with which cancer cells respond to these drugs. Here, we determine the type and extent of nuclear stress responses of prostate cancer cells to clinically relevant platinum drugs. METHODS: We study nucleolar and Cajal body (CB) responses to cisplatin, carboplatin, and oxaliplatin with immunofluorescence-based methods in prostate cancer cells. We utilize organelle-specific markers NPM, Fibrillarin, Coilin, and SMN1, and study CB-regulatory proteins FUS and TDP-43 using siRNA-mediated downregulation. RESULTS: Different types of prostate cancer cells have different sensitivities to platinum drugs. With equally cytotoxic doses, cisplatin, and oxaliplatin induce prominent nucleolar and CB stress responses while the nuclear stress phenotypes to carboplatin are milder. We find that Coilin is a stress-specific marker for platinum drug response heterogeneity. We also find that CB-associated, stress-responsive RNA binding proteins FUS and TDP-43 control Coilin and CB biology in prostate cancer cells and, further, that TDP-43 is associated with stress-responsive CBs in prostate cancer cells. CONCLUSION: Our findings provide insight into the heterologous responses of prostate cancer cells to different platinum drug treatments and indicate Coilin and TDP-43 as stress mediators in the varied outcomes. These results help understand cancer drug responses at a cellular level and have implications in tackling heterogeneity in cancer treatment outcomes.

2.
Cell Commun Signal ; 17(1): 148, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730483

RESUMEN

BACKGROUND: Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. METHODS: We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. RESULTS: Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. CONCLUSIONS: Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.


Asunto(s)
Movimiento Celular , Factores de Transcripción NFATC/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proliferación Celular , Humanos , Masculino , Espectrometría de Masas , Células PC-3 , Fosforilación , Neoplasias de la Próstata/patología , Transducción de Señal , Células Tumorales Cultivadas
3.
Am J Pathol ; 187(11): 2546-2557, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28827140

RESUMEN

miRNAs are important regulators of gene expression and are often deregulated in cancer. We have previously shown that miR-32 is an androgen receptor-regulated miRNA overexpressed in castration-resistant prostate cancer and that miR-32 can improve prostate cancer cell growth in vitro. To assess the effects of miR-32 in vivo, we developed transgenic mice overexpressing miR-32 in the prostate. The study indicated that transgenic miR-32 expression increases replicative activity in the prostate epithelium. We further observed an aging-associated increase in the incidence of goblet cell metaplasia in the prostate epithelium. Furthermore, aged miR-32 transgenic mice exhibited metaplasia-associated prostatic intraepithelial neoplasia at a low frequency. When crossbred with mice lacking the other allele of tumor-suppressor Pten (miR-32xPten+/- mice), miR-32 expression increased both the incidence and the replicative activity of prostatic intraepithelial neoplasia lesions in the dorsal prostate. The miR-32xPten+/- mice also demonstrated increased goblet cell metaplasia compared with Pten+/- mice. By performing a microarray analysis of mouse prostate tissue to screen downstream targets and effectors of miR-32, we identified RAC2 as a potential, and clinically relevant, target of miR-32. We also demonstrate down-regulation of several interesting, potentially prostate cancer-relevant genes (Spink1, Spink5, and Casp1) by miR-32 in the prostate tissue. The results demonstrate that miR-32 increases proliferation and promotes metaplastic transformation in mouse prostate epithelium, which may promote neoplastic alterations in the prostate.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Próstata/patología , Neoplasias de la Próstata/genética , Animales , Proliferación Celular/genética , Transformación Celular Neoplásica/patología , Epitelio/patología , Masculino , Ratones , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo
4.
Prostate ; 75(8): 798-805, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25731699

RESUMEN

BACKGROUND: Recently, there has been increasing attention on the role of microRNAs (miRNAs) in cancer development. Several expression profiling studies have provided evidence of aberrant expression of miRNAs in prostate cancer and have highlighted the potential use of specific miRNA expression signatures as prognostic or predictive markers. Here we report an expression analysis of miR-1247-5p, miR-1249, miR-1269a, miR-1271-5p, miR-1290, miR-1291, and miR-1299. METHODS: qRT-PCR was performed to validate the differential expression of miRNAs in clinical samples, and the effect of miR-1247-5p was studied in prostate cancer cell lines transiently transfected with a miR-1247-5p mimic. The expression of miR-1247-5p's putative target MYCBP2 was evaluated by qRT-PCR and Western blotting, and the interaction of the miRNA with the target gene was assessed using a luciferase assay. RESULTS: We found a significant up-regulation of miR-1247-5p in castration-resistant prostate cancer (CRPC) samples compared to non-malignant prostate. The expression of miR-1247-5p was subsequently studied in prostate cancer (PC) cell lines where an up-regulation of miR-1247-5p was observed in the androgen-independent PC-3 model. Target prediction analysis for miR-1247-5p performed online revealed that MYCBP2 (myc-binding protein 2) was a high-scoring potential target. Functional studies in vitro performed using PC-3 and LNCaP models confirmed the down-regulation of MYCBP2 at the mRNA and protein levels, and a luciferase assay showed interaction between the miRNA and target gene. CONCLUSION: miR-1247-5p is overexpressed in CRPC and targets MYCBP2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/biosíntesis , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Anciano , Línea Celular Tumoral , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Mensajero/biosíntesis , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores
5.
Int J Pharm ; 652: 123764, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176479

RESUMEN

Triple-negative breast cancer (TNBC) diagnosis remains challenging without expressing critical receptors. Cancer cell membrane (CCm) coating has been extensively studied for targeted cancer diagnostics due to attractive features such as good biocompatibility and homotypic tumor-targeting. However, the present study found that widely used CCm coating approaches, such as extrusion, were not applicable for functionalizing irregularly shaped nanoparticles (NPs), such as porous silicon (PSi). To tackle this challenge, we proposed a novel approach that employs polyethylene glycol (PEG)-assisted membrane coating, wherein PEG and CCm are respectively functionalized on PSi NPs through chemical conjugation and physical absorption. Meanwhile, the PSi NPs were grafted with the bisphosphonate (BP) molecules for radiolabeling. Thanks to the good chelating ability of BP and homotypic tumor targeting of cancer CCm coating, a novel PSi-based contrast agent (CCm-PEG-89Zr-BP-PSi) was developed for targeted positron emission tomography (PET)/computed tomography (CT) imaging of TNBC. The novel imaging agent showed good radiochemical purity (∼99 %) and stability (∼95 % in PBS and ∼99 % in cell medium after 48 h). Furthermore, the CCm-PEG-89Zr-BP-PSi NPs had efficient homotypic targeting ability in vitro and in vivo for TNBC. These findings demonstrate a versatile biomimetic coating method to prepare novel NPs for tumor-targeted diagnosis.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Polietilenglicoles/química , Silicio , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Biomimética , Nanopartículas/química , Membrana Celular/metabolismo , Línea Celular Tumoral
6.
Sci Rep ; 14(1): 11562, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773237

RESUMEN

Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.


Asunto(s)
Predisposición Genética a la Enfermedad , Glioma , N-Acetilgalactosaminiltransferasas , Linaje , Humanos , Finlandia , Glioma/genética , Glioma/patología , Femenino , Masculino , N-Acetilgalactosaminiltransferasas/genética , Polipéptido N-Acetilgalactosaminiltransferasa , Mutación de Línea Germinal , Adulto , Persona de Mediana Edad , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Secuenciación del Exoma
7.
Oncogenesis ; 11(1): 11, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35228520

RESUMEN

miR-32 is an androgen receptor (AR)-regulated microRNA, expression of which is increased in castration-resistant prostate cancer (PC). We have previously shown that overexpression of miR-32 in the prostate of transgenic mice potentiates proliferation in prostate epithelium. Here, we set out to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo. We studied transgenic mice expressing MYC oncogene (hiMYC mice) to induce tumorigenesis in the mouse prostate and discovered that transgenic overexpression of miR-32 resulted in increased tumor burden as well as a more aggressive tumor phenotype in this model. Elevated expression of miR-32 increased proliferation as assessed by Ki-67 immunohistochemistry, increased nuclear density, and higher mitotic index in the tumors. By gene expression analysis of the tumorous prostate tissue, we confirmed earlier findings that miR-32 expression regulates prostate secretome by modulating expression levels of several PC-related target genes such as Spink1, Spink5, and Msmb. Further, we identified Pdk4 as a tumor-associated miR-32 target in the mouse prostate. Expression analysis of PDK4 in human PC reveals an inverse correlation with miR-32 expression and Gleason score, a decrease in castration-resistant and metastatic tumors compared to untreated primary PC, and an association of low PDK4 expression with a shorter recurrence-free survival of patients. Although decreased PDK4 expression induces the higher metabolic activity of PC cells, induced expression of PDK4 reduces both mitotic respiration and glycolysis rates as well as inhibits cell growth. In conclusion, we show that miR-32 promotes MYC-induced prostate adenocarcinoma and identifies PDK4 as a PC-relevant metabolic target of miR-32-3p.

8.
Cancers (Basel) ; 13(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638309

RESUMEN

Prostate cancer is the second most frequent cancer of men worldwide. While the genetic landscapes and heterogeneity of prostate cancer are relatively well-known already, methodological developments now allow for studying basic and dynamic proteomes on a large scale and in a quantitative fashion. This aids in revealing the functional output of cancer genomes. It has become evident that not all aberrations at the genetic and transcriptional level are translated to the proteome. In addition, the proteomic level contains heterogeneity, which increases as the cancer progresses from primary prostate cancer (PCa) to metastatic and castration-resistant prostate cancer (CRPC). While multiple aspects of prostate adenocarcinoma proteomes have been studied, less is known about proteomes of neuroendocrine prostate cancer (NEPC). In this review, we summarize recent developments in prostate cancer proteomics, concentrating on the proteomic landscapes of clinical prostate cancer, cell line and mouse model proteomes interrogating prostate cancer-relevant signaling and alterations, and key prostate cancer regulator interactomes, such as those of the androgen receptor (AR). Compared to genomic and transcriptomic analyses, the view provided by proteomics brings forward changes in prostate cancer metabolism, post-transcriptional RNA regulation, and post-translational protein regulatory pathways, requiring the full attention of studies in the future.

9.
Front Cell Dev Biol ; 9: 623809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634124

RESUMEN

Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.

10.
BMC Res Notes ; 13(1): 311, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611374

RESUMEN

OBJECTIVE: Plasma, but also urine sample could represent a simple liquid biopsy for ovarian cancer biomarker detection. The miRNA-200 family has been shown to be dysregulated in ovarian cancer. The aim of this study was to isolate three members of miR-200 family from tumor tissue, plasma and urine of high-grade serous ovarian cancer patients in comparison with samples from patients with benign ovarian tumors. This is a methodological pilot study of a prospective ovarian cancer patient cohort investigating the potential of liquid biopsies and the role of miRNAs in ovarian cancer treatment. RESULTS: MiR-200a, miR-200b and miR-200c were isolated from samples of nine ovarian cancer patients and seven patients with benign ovarian tumor. The most significant finding is that all three miRNAs were detectable in all sample types. Tumor tissue and plasma, but not urine analysis was able to discriminate malignant and benign samples. A correlation between the miRNA-200 expression in urine and plasma was observed in malignant samples only. Plasma and urine with respect to miRNA detection show potential according to this study, but larger studies are needed to clarify the usefulness of these liquid biopsies in ovarian cancer. TRIAL REGISTRATION: ClinicalTrials.gov NCT02758652, May 2, 2016.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , MicroARNs/metabolismo , Neoplasias Ováricas/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina , Carcinoma Epitelial de Ovario/sangre , Carcinoma Epitelial de Ovario/orina , Estudios de Cohortes , Femenino , Humanos , MicroARNs/sangre , MicroARNs/orina , Persona de Mediana Edad , Neoplasias Ováricas/sangre , Neoplasias Ováricas/orina , Proyectos Piloto
11.
Methods Mol Biol ; 1443: 151-63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27246339

RESUMEN

The discovery of microRNAs (miRNAs) provided yet another mechanism of gene expression regulation. miRNAs have recently been also implicated in many diseases, including prostate cancer (PC). As PC is a highly androgen-dependent disease, extensive effort has been invested to identify the miRNAs that are androgen regulated. However, relatively few of them have been shown to be directly androgen regulated in PC. In this chapter we introduce the commonly used techniques to study the androgen regulation of miRNAs. The most cost-effective tool to profile global miRNA expression is microarray-based hybridization, whereas real-time quantitative reverse transcription PCR (qRT-PCR) is commonly used for the study of individual miRNAs.


Asunto(s)
Andrógenos/farmacología , Perfilación de la Expresión Génica/métodos , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias de la Próstata/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , MicroARNs/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas
12.
Oncotarget ; 7(17): 24766-77, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27015120

RESUMEN

Prostate cancer (PCa) is the most common cancer among men in developed countries. Although its genetic background is thoroughly investigated, rather little is known about the role of small non-coding RNAs (sncRNA) in this disease. tRNA-derived fragments (tRFs) represent a new class of sncRNAs, which are present in a broad range of species and have been reported to play a role in several cellular processes. Here, we analyzed the expression of tRFs in fresh frozen patient samples derived from normal adjacent prostate and different stages of PCa by RNA-sequencing. We identified 598 unique tRFs, many of which are deregulated in cancer samples when compared to normal adjacent tissue. Most of the identified tRFs are derived from the 5'- and 3'-ends of mature cytosolic tRNAs, but we also found tRFs produced from other parts of tRNAs, including pre-tRNA trailers and leaders, as well as tRFs from mitochondrial tRNAs. The 5'-derived tRFs comprise the most abundant class of tRFs in general and represent the major class among upregulated tRFs. The 3'-derived tRFs types are dominant among downregulated tRFs in PCa. We validated the expression of three tRFs using qPCR. The ratio of tRFs derived from tRNALysCTT and tRNAPheGAA emerged as a good indicator of progression-free survival and a candidate prognostic marker. This study provides a systematic catalogue of tRFs and their dysregulation in PCa and can serve as the basis for further research on the biomarker potential and functional roles of tRFs in this disease.


Asunto(s)
Neoplasias de la Próstata/genética , Precursores del ARN/genética , ARN Pequeño no Traducido/genética , ARN de Transferencia/genética , Humanos , Masculino
13.
Eur Urol ; 67(1): 7-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25234358

RESUMEN

UNLABELLED: MicroRNA (miRNA) expression profiles were generated from prostate epithelial subpopulations enriched from patient-derived benign prostatic hyperplasia (n=5), Gleason 7 treatment-naive prostate cancer (PCa) (n=5), and castration-resistant PCa (CRPC) (n=3). Microarray expression was validated in an independent patient cohort (n=10). Principal component analysis showed that miRNA expression is clustered by epithelial cell phenotype, regardless of pathologic status. We also discovered concordance between the miRNA expression profiles of unfractionated epithelial cells from CRPCs, human embryonic stem cells (SCs), and prostate epithelial SCs (both benign and malignant). MiR-548c-3p was chosen as a candidate miRNA from this group to explore its usefulness as a CRPC biomarker and/or therapeutic target. Overexpression of miR-548c-3p was confirmed in SCs (fivefold, p<0.05) and in unfractionated CRPCs (1.8-fold, p<0.05). Enforced overexpression of miR-548c-3p in differentiated cells induced stemlike properties (p<0.01) and radioresistance (p<0.01). Reanalyses of published studies further revealed that miR-548c-3p is significantly overexpressed in CRPC (p<0.05) and is associated with poor recurrence-free survival (p<0.05), suggesting that miR-548c-3p is a functional biomarker for PCa aggressiveness. Our results validate the prognostic and therapeutic relevance of miRNAs for PCa management while demonstrating that resolving cell-type and differentiation-specific differences is essential to obtain clinically relevant miRNA expression profiles. PATIENT SUMMARY: We report microRNA (miRNA) expression profiles of epithelial cell fractions from the human prostate, including stem cells. miR-548c-3p was revealed as a functional biomarker for prostate cancer progression. The evaluation of miR-548c-3p in a larger patient cohort should yield information on its clinical usefulness.


Asunto(s)
Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Células Madre Neoplásicas , Hiperplasia Prostática/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Supervivencia sin Enfermedad , Células Epiteliales , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Tolerancia a Radiación/genética , Regulación hacia Arriba
14.
Cancer Med ; 4(9): 1417-25, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26129688

RESUMEN

Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1 mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3'UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3'UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer.


Asunto(s)
Ciclina D1/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , Regiones no Traducidas 3' , Línea Celular Tumoral , Metilación de ADN , Humanos , Masculino , Clasificación del Tumor , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Neoplasias de la Próstata/cirugía , ARN Mensajero/genética
15.
Cancer Res ; 75(19): 4026-31, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26282172

RESUMEN

Castration-resistant prostate cancers (CRPC) that arise after the failure of androgen-blocking therapies cause most of the deaths from prostate cancer, intensifying the need to fully understand CRPC pathophysiology. In this study, we characterized the transcriptomic differences between untreated prostate cancer and locally recurrent CRPC. Here, we report the identification of 145 previously unannotated intergenic long noncoding RNA transcripts (lncRNA) or isoforms that are associated with prostate cancer or CRPC. Of the one third of these transcripts that were specific for CRPC, we defined a novel lncRNA termed PCAT5 as a regulatory target for the transcription factor ERG, which is activated in approximately 50% of human prostate cancer. Genome-wide expression analysis of a PCAT5-positive prostate cancer after PCAT5 silencing highlighted alterations in cell proliferation pathways. Strikingly, an in vitro validation of these alterations revealed a complex integrated phenotype affecting cell growth, migration, invasion, colony-forming potential, and apoptosis. Our findings reveal a key molecular determinant of differences between prostate cancer and CRPC at the level of the transcriptome. Furthermore, they establish PCAT5 as a novel oncogenic lncRNA in ERG-positive prostate cancers, with implications for defining CRPC biomarkers and new therapeutic interventions.


Asunto(s)
Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/genética , ARN Largo no Codificante/genética , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Transactivadores/fisiología , Adenocarcinoma/patología , Anciano , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Fenotipo , Hiperplasia Prostática/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Largo no Codificante/aislamiento & purificación , ARN Largo no Codificante/fisiología , ARN Mensajero/genética , ARN Neoplásico/genética , Regulador Transcripcional ERG , Transcriptoma
16.
BMC Res Notes ; 7: 547, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25135188

RESUMEN

BACKGROUND: The aim of the study was to characterize a recurrent amplification at chromosomal region 1p21-22 in bladder cancer. METHODS: ArrayCGH (aCGH) was performed to identify DNA copy number variations in 7 clinical samples and 6 bladder cancer cell lines. FISH was used to map the amplicon at 1p21-22 in the cell lines. Gene expression microarrays and qRT-PCR were used to study the expression of putative target genes in the region. RESULTS: aCGH identified an amplification at 1p21-22 in 10/13 (77%) samples. The minimal region of the amplification was mapped to a region of about 1 Mb in size, containing a total of 11 known genes. The highest amplification was found in SCaBER squamous cell carcinoma cell line. Four genes, TMED5, DR1, RPL5 and EVI5, showed significant overexpression in the SCaBER cell line compared to all the other samples tested. Oncomine database analysis revealed upregulation of DR1 in superficial and infiltrating bladder cancer samples, compared to normal bladder. CONCLUSIONS: In conclusions, we have identified and mapped chromosomal amplification at 1p21-22 in bladder cancer as well as studied the expression of the genes in the region. DR1 was found to be significantly overexpressed in the SCaBER, which is a model of squamous cell carcinoma. However, the overexpression was found also in a published clinical sample cohort of superficial and infiltrating bladder cancers. Further studies with more clinical material are needed to investigate the role of the amplification at 1p21-22.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 1 , Neoplasias de la Vejiga Urinaria/genética , Secuencia de Bases , Línea Celular Tumoral , Hibridación Genómica Comparativa , Cartilla de ADN , Humanos , Hibridación Fluorescente in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA