Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202757

RESUMEN

In this study, we describe the construction of the first genetically modified mutant of a halovirus infecting haloalkaliphilic Archaea By random choice, we targeted ORF79, a currently uncharacterized viral gene of the haloalkaliphilic virus ϕCh1. We used a polyethylene glycol (PEG)-mediated transformation method to deliver a disruption cassette into a lysogenic strain of the haloalkaliphilic archaeon Natrialba magadii bearing ϕCh1 as a provirus. This approach yielded mutant virus particles carrying a disrupted version of ORF79. Disruption of ORF79 did not influence morphology of the mature virions. The mutant virus was able to infect cured strains of N. magadii, resulting in a lysogenic, ORF79-disrupted strain. Analysis of this strain carrying the mutant virus revealed a repressor function of ORF79. In the absence of gp79, onset of lysis and expression of viral proteins occurred prematurely compared to their timing in the wild-type strain. Constitutive expression of ORF79 in a cured strain of N. magadii reduced the plating efficiency of ϕCh1 by seven orders of magnitude. Overexpression of ORF79 in a lysogenic strain of N. magadii resulted in an inhibition of lysis and total absence of viral proteins as well as viral progeny. In further experiments, gp79 directly regulated the expression of the tail fiber protein ORF34 but did not influence the methyltransferase gene ORF94. Further, we describe the establishment of an inducible promoter for in vivo studies in N. magadiiIMPORTANCE Genetic analyses of haloalkaliphilic Archaea or haloviruses are only rarely reported. Therefore, only little insight into the in vivo roles of proteins and their functions has been gained so far. We used a reverse genetics approach to identify the function of a yet undescribed gene of ϕCh1. We provide evidence that gp79, a currently unknown protein of ϕCh1, acts as a repressor protein of the viral life cycle, affecting the transition from the lysogenic to the lytic state of the virus. Thus, repressor genes in other haloviruses could be identified by sequence homologies to gp79 in the future. Moreover, we describe the use of an inducible promoter of N. magadii Our work provides valuable tools for the identification of other unknown viral genes by our approach as well as for functional studies of proteins by inducible expression.


Asunto(s)
Halobacteriaceae/virología , Lisogenia/genética , Myoviridae/genética , Sistemas de Lectura Abierta/genética , Proteínas Represoras/genética , ADN Viral/genética , Genes Virales/genética , Regiones Promotoras Genéticas/genética , Proteínas Virales/genética , Fenómenos Fisiológicos de los Virus/genética
2.
EClinicalMedicine ; 67: 102404, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274114

RESUMEN

Background: Toxic shock syndrome toxin-1 (TSST-1) is a superantigen produced by Staphylococcus aureus that causes the life-threatening toxic shock syndrome. The development of a safe and immunogenic vaccine against TSST-1 remains an unmet medical need. We investigated the safety, tolerability and immunogenicity of a recombinant TSST-1 variant vaccine (rTSST-1v) after 1-3 injections in healthy volunteers. Methods: In this randomised, double-blind, adjuvant-controlled, parallel-group, phase 2 trial, healthy adults aged 18-64 were randomly allocated to undergo 1-3 injections of either 10 or 100 µg rTSST-1v or Al(OH)3. The primary endpoint was safety and tolerability of rTSST-1v in the intention-to-treat population. The per-protocol population was used for the immunogenicity analysis. The trial is registered with EudraCT#: 2015-003714-24; ClinicalTrials.gov#: NCT02814708. Findings: Between April and November 2017,140 subjects were enrolled and 126 completed the trial. rTSST-1v showed a good safety and tolerability profile. A total of 855 systemic adverse events occurred, 280 of which were suspected related adverse events, without dose dependency. Two participants were discontinued early because of allergic reactions. Seroconversion occurred in >81% of subjects within 3 months of the first immunisation which was sustained until 18 months after the third immunisation in over 70% of subjects in the pooled low-dose group and in over 85% in the pooled high-dose group. Interpretation: rTSST-1v in cumulative doses of up to 300 µg was safe, well-tolerated and highly immunogenic. Two immunisations with 100 µg rTSST-1v provided the most persistent immune response and may be evaluated in future trials. Funding: Biomedizinische Forschung & Bio-Produkte AG funded this study.

3.
Biointerphases ; 15(3): 031003, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429672

RESUMEN

Ice nucleation (IN) active bacteria such as Pseudomonas syringae promote the growth of ice crystals more effectively than any material known. Using the specialized ice nucleation protein (INP) InaZ, P. syringae-the well studied epiphytic plant pathogen-attacks plants by frost damage and, likewise fascinating, drives ice nucleation within clouds when airborne in the atmosphere by linkage to the Earth's water cycle. While ice nucleation proteins play a tremendous role for life on the planet, the molecular details of their activity on the bacterial membrane surface are largely unknown. Bacterial ghosts (BGs) derived from Escherichia coli can be used as simplified model systems to study the mode of action of InaZ. In this work, the authors used BGs to study the role of InaZ localization on the luminal side of the bacterial inner membrane. Naturally, P. syringae INPs are displayed on the surface of the outer membrane; so in contrast, the authors engineered an N-terminal truncated form of inaZ lacking the transport sequence for anchoring of InaZ on the outer membrane. This construct was fused to N- and C-terminal inner membrane anchors and expressed in Escherichia coli C41. The IN activity of the corresponding living recombinant E. coli catalyzing interfacial ice formation of supercooled water at high subzero temperatures was tested by a droplet-freezing assay and surface spectroscopy. The median freezing temperature (T50) of the parental living E. coli C41 cells without INP was detected at -20.1 °C and with inner membrane anchored INPs at a T50 value between -7 and -9 °C, demonstrating that the induction of IN from the inside of the bacterium by inner membrane anchored INPs facing the luminal inner membrane side is very similar to IN induced by bacterial INPs located at the outer membrane. Bacterial ghosts derived from these different constructs showed first droplet freezing values between -6 and -8 °C, whereas E. coli C41 BGs alone without carrying inner membrane anchored INPs exhibit a T50 of -18.9 °C. Sum frequency generation spectroscopy showed structural ordered water at the BG/water interface, which increased close to the water melting point. Together, this indicates that the more efficient IN of INP-BGs compared to their living parental strains can be explained by the free access of inner membrane anchored INP constructs to ultrapure water filling the inner space of the BGs.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Congelación , Hielo , Proteínas de Escherichia coli/química , Dominios Proteicos
4.
Bioengineered ; 8(5): 488-500, 2017 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-28121482

RESUMEN

In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between -5.6 °C and -6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs).


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/química , Pseudomonas syringae/fisiología , Extractos Celulares/química , Extractos Celulares/genética , Escherichia coli/genética , Hielo , Pseudomonas syringae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA