Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 20(10): 3462-3483, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30058270

RESUMEN

Iron is the most abundant redox-active metal in the Earth's crust. The one electron transfer between the two most common redox states, Fe(II) and Fe(III), plays a role in a huge range of environmental processes from mineral formation and dissolution to contaminant remediation and global biogeochemical cycling. It has been appreciated for more than a century that microorganisms can harness the energy of this Fe redox transformation for their metabolic benefit. However, this is most widely understood for anaerobic Fe(III)-reducing or aerobic and microaerophilic Fe(II)-oxidizing bacteria. Only in the past few decades have we come to appreciate that bacteria also play a role in the anaerobic oxidation of ferrous iron, Fe(II), and thus can act to form Fe(III) minerals in anoxic settings. Since this discovery, our understanding of the ecology of these organisms, their mechanisms of Fe(II) oxidation and their role in environmental processes has been increasing rapidly. In this article, we bring these new discoveries together to review the current knowledge on these environmentally important bacteria, and reveal knowledge gaps for future research.


Asunto(s)
Bacterias/metabolismo , Compuestos Ferrosos/metabolismo , Compuestos Férricos/metabolismo , Oxidación-Reducción , Microbiología del Suelo , Microbiología del Agua
2.
Palaontol Z ; 95(4): 593-610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35034981

RESUMEN

Banded Iron Formations (BIFs) are marine chemical sediments consisting of alternating iron (Fe)-rich and silica (Si)-rich bands which were deposited throughout much of the Precambrian era. BIFs represent important proxies for the geochemical composition of Precambrian seawater and provide evidence for early microbial life. Iron present in BIFs was likely precipitated in the form of Fe3+ (Fe(III)) minerals, such as ferrihydrite (Fe(OH)3), either through the metabolic activity of anoxygenic photoautotrophic Fe2+ (Fe(II))-oxidizing bacteria (photoferrotrophs), by microaerophilic bacteria, or by the oxidation of dissolved Fe(II) by O2 produced by early cyanobacteria. However, in addition to oxidized Fe-bearing minerals such as hematite (FeIII 2O3), (partially) reduced minerals such as magnetite (FeIIFeIII 2O4) and siderite (FeIICO3) are found in BIFs as well. The presence of reduced Fe in BIFs has been suggested to reflect the reduction of primary Fe(III) minerals by dissimilatory Fe(III)-reducing bacteria, or by metamorphic (high pressure and temperature) reactions occurring in presence of buried organic matter. Here, we present the current understanding of the role of Fe-metabolizing bacteria in the deposition of BIFs, as well as competing hypotheses that favor an abiotic model for BIF deposition. We also discuss the potential abiotic and microbial reduction of Fe(III) in BIFs after deposition. Further, we review the availability of essential nutrients (e.g. P and Ni) and their implications on early Earth biogeochemistry. Overall, the combined results of various ancient seawater analogue experiments aimed at assessing microbial iron cycling pathways, coupled with the analysis of the BIF rock record, point towards a strong biotic influence during BIF genesis.

3.
Free Radic Biol Med ; 140: 154-166, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31323314

RESUMEN

Iron is the most abundant redox active metal on Earth and thus provides one of the most important records of the redox state of Earth's ancient atmosphere, oceans and landmasses over geological time. The most dramatic shifts in the Earth's iron cycle occurred during the oxidation of Earth's atmosphere. However, tracking the spatial and temporal development of the iron cycle is complicated by uncertainties about both the timing and location of the evolution of oxygenic photosynthesis, and by the myriad of microbial processes that act to cycle iron between redox states. In this review, we piece together the geological evidence to assess where and when oxygenic photosynthesis likely evolved, and attempt to evaluate the influence of this innovation on the microbial iron cycle.


Asunto(s)
Planeta Tierra , Hierro/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Atmósfera/química , Evolución Biológica , Cianobacterias/metabolismo , Hierro/química , Oxidación-Reducción , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA