Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7977): 47-48, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648821

Asunto(s)
Lípidos , Lipogénesis
2.
J Biol Chem ; 295(25): 8628-8635, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32393576

RESUMEN

Excess fatty acid accumulation in nonadipose tissues leads to cell dysfunction and cell death that is linked to the pathogenesis of inherited and acquired human diseases. Study of this process, known as lipotoxicity, has provided new insights into the regulation of lipid homeostasis and has revealed new molecular pathways involved in lipid-induced cellular stress. The discovery that disruption of specific small nucleolar RNAs protects against fatty acid-induced cell death and remodels metabolism in vivo opens new opportunities for understanding how nutrient signals influence cellular and systemic metabolic homeostasis through RNA biology.


Asunto(s)
Muerte Celular , Ácidos Grasos/metabolismo , ARN Nucleolar Pequeño/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos/toxicidad , Humanos , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Especies Reactivas de Oxígeno/metabolismo
3.
J Lipid Res ; 61(3): 403-412, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988149

RESUMEN

Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-ß-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD's mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses.


Asunto(s)
Colesterol/metabolismo , Ciclodextrinas/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colesterol/análisis , Homeostasis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Marcaje Isotópico , Lisosomas/química , Lisosomas/metabolismo , Proteína Niemann-Pick C1
4.
J Lipid Res ; 61(7): 1065-1074, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393551

RESUMEN

Cardiac dysfunction in T2D is associated with excessive FA uptake, oxidation, and generation of toxic lipid species by the heart. It is not known whether decreasing lipid delivery to the heart can effect improvement in cardiac function in humans with T2D. Thus, our objective was to test the hypothesis that lowering lipid delivery to the heart would result in evidence of decreased "lipotoxicity," improved cardiac function, and salutary effects on plasma biomarkers of cardiovascular risk. Thus, we performed a double-blind randomized placebo-controlled parallel design study of the effects of 12 weeks of fenofibrate-induced lipid lowering on cardiac function, inflammation, and oxidation biomarkers, and on the ratio of two plasma ceramides, Cer d18:1 (4E) (1OH, 3OH)/24:0 and Cer d18:1 (4E) (1OH, 3OH)/16:0 (i.e., "C24:0/C16:0"), which is associated with decreased risk of cardiac dysfunction and heart failure. Fenofibrate lowered plasma TG and cholesterol but did not improve heart systolic or diastolic function. Fenofibrate treatment lowered the plasma C24:0/C16:0 ceramide ratio and minimally altered oxidative stress markers but did not alter measures of inflammation. Overall, plasma TG lowering correlated with improvement of cardiac relaxation (diastolic function) as measured by tissue Doppler-derived parameter e'. Moreover, lowering the plasma C24:0/C16:0 ceramide ratio was correlated with worse diastolic function. These findings indicate that fenofibrate treatment per se is not sufficient to effect changes in cardiac function; however, decreases in plasma TG may be linked to improved diastolic function. In contrast, decreases in plasma C24:0/C16:0 are linked with worsening cardiac function.


Asunto(s)
Ceramidas/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Fenofibrato/uso terapéutico , Corazón/efectos de los fármacos , Corazón/fisiopatología , Triglicéridos/sangre , Adulto , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Mol Genet Metab ; 131(4): 405-417, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33257258

RESUMEN

Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3ß,5α,6ß-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-ß-cyclodextrin (HPßCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Asunto(s)
Glicina/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedad de Niemann-Pick Tipo C/sangre , Enfermedad de Niemann-Pick Tipo C/genética , 2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Ácidos y Sales Biliares/sangre , Biomarcadores/sangre , Femenino , Glicina/análogos & derivados , Glicina/aislamiento & purificación , Humanos , Masculino , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/patología , Espectrometría de Masas en Tándem , Proteínas de Transporte Vesicular/genética
6.
Mol Genet Metab ; 129(4): 292-302, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033912

RESUMEN

Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPßCD treatment. In an intravenous (IV) HPßCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Fosforilcolina/sangre , Fosforilcolina/líquido cefalorraquídeo , Adolescente , Adulto , Anciano , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Gatos , Niño , Preescolar , Cromatografía Liquida , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Espectrometría de Masas en Tándem , Resultado del Tratamiento , Adulto Joven
7.
Circ Res ; 122(1): 58-73, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29092894

RESUMEN

RATIONALE: Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. OBJECTIVE: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. METHODS AND RESULTS: Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. CONCLUSIONS: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Miocitos Cardíacos/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Preparación de Corazón Aislado/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
8.
J Lipid Res ; 60(3): 707-716, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30617147

RESUMEN

Cholesterol is an essential structural component of cellular membranes and precursor molecule for oxysterol, bile acid, and hormone synthesis. The study of intracellular cholesterol trafficking pathways has been limited in part due to a lack of suitable cholesterol analogues. Herein, we developed three novel diazirine alkyne cholesterol probes: LKM38, KK174, and KK175. We evaluated these probes as well as a previously described diazirine alkyne cholesterol analogue, trans-sterol, for their fidelity as cholesterol mimics and for study of cholesterol trafficking. LKM38 emerged as a promising cholesterol mimic because it both sustained the growth of cholesterol-auxotrophic cells and appropriately regulated key cholesterol homeostatic pathways. When presented as an ester in lipoprotein particles, LKM38 initially localized to the lysosome and subsequently trafficked to the plasma membrane and endoplasmic reticulum. LKM38 bound to diverse, established cholesterol binding proteins. Through a detailed characterization of the cellular behavior of a panel of diazirine alkyne probes using cell biological, biochemical trafficking assays and immunofluorescence approaches, we conclude that LKM38 can serve as a powerful tool for the study of cholesterol protein interactions and trafficking.


Asunto(s)
Alquinos/química , Colesterol/metabolismo , Diazometano/síntesis química , Diazometano/metabolismo , Espacio Intracelular/metabolismo , Sondas Moleculares/síntesis química , Sondas Moleculares/metabolismo , Transporte Biológico , Línea Celular Tumoral , Técnicas de Química Sintética , Diazometano/química , Homeostasis , Humanos , Lipoproteínas/metabolismo , Lisosomas/metabolismo , Sondas Moleculares/química
9.
J Lipid Res ; 60(8): 1410-1424, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31201291

RESUMEN

Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C/metabolismo , Fosforilcolina/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo C/genética
10.
J Biol Chem ; 293(34): 13284-13296, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29980600

RESUMEN

Small nucleolar RNAs (snoRNAs) are noncoding RNAs that guide chemical modifications of structural RNAs. Whereas snoRNAs primarily localize in the nucleolus, where their canonical function is to target nascent ribosomal RNAs for 2'-O-methylation, recent studies provide evidence that snoRNAs traffic out of the nucleus. Furthermore, RNA-Seq data indicate that extracellular vesicles released from cells contain snoRNAs. However, it is not known whether snoRNA secretion is regulated or whether secreted snoRNAs are functional. Here, we show that inflammation stimulates secretion of Rpl13a snoRNAs U32a (SNORD32a), U33 (SNORD33), U34 (SNORD34), and U35a (SNORD35a) from cultured macrophages, in mice, and in human subjects. Secreted snoRNAs co-fractionate with extracellular vesicles and are taken up by recipient cells. In a murine parabiosis model, we demonstrate that snoRNAs travel through the circulation to function in distant tissues. These findings support a previously unappreciated link between inflammation and snoRNA secretion in mice and humans and uncover a potential role for secreted snoRNAs in cell-cell communication.


Asunto(s)
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/química , ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/fisiología , Animales , Transporte Biológico , Nucléolo Celular/genética , Núcleo Celular/genética , Femenino , Humanos , Masculino , Metilación , Ratones , Ratones Noqueados , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética
11.
Circulation ; 138(3): 305-315, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30012703

RESUMEN

Lipid droplets (LDs) are distinct and dynamic organelles that affect the health of cells and organs. Much progress has been made in understanding how these structures are formed, how they interact with other cellular organelles, how they are used for storage of triacylglycerol in adipose tissue, and how they regulate lipolysis. Our understanding of the biology of LDs in the heart and vascular tissue is relatively primitive in comparison with LDs in adipose tissue and liver. The National Heart, Lung, and Blood Institute convened a working group to discuss how LDs affect cardiovascular diseases. The goal of the working group was to examine the current state of knowledge on the cell biology of LDs, including current methods to study them in cells and organs and reflect on how LDs influence the development and progression of cardiovascular diseases. This review summarizes the working group discussion and recommendations on research areas ripe for future investigation that will likely improve our understanding of atherosclerosis and heart function.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Gotas Lipídicas/metabolismo , Miocardio/metabolismo , Animales , Enfermedades Cardiovasculares/genética , Consensus Development Conferences, NIH as Topic , Modelos Animales de Enfermedad , Interacción Gen-Ambiente , Humanos , Metabolismo de los Lípidos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
12.
Mol Genet Metab ; 126(2): 183-187, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30172462

RESUMEN

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS: To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3ß,5α,6ß-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS: Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS: These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.


Asunto(s)
Ácidos y Sales Biliares/análisis , Pruebas con Sangre Seca , Enfermedad de Niemann-Pick Tipo C/sangre , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Bancos de Muestras Biológicas , Biomarcadores/sangre , California , Estudios de Casos y Controles , Cromatografía Liquida , Femenino , Humanos , Recién Nacido , Masculino , Michigan , Tamizaje Neonatal , New York , Estudios Retrospectivos , Espectrometría de Masas en Tándem
13.
J Biol Chem ; 292(49): 20228-20239, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29021253

RESUMEN

Small nucleolar RNAs (snoRNAs) guide chemical modifications of ribosomal and small nuclear RNAs, functions that are carried out in the nucleus. Although most snoRNAs reside in the nucleolus, a growing body of evidence indicates that snoRNAs are also present in the cytoplasm and that snoRNAs move between the nucleus and cytoplasm by a mechanism that is regulated by lipotoxic and oxidative stress. Here, in a genome-wide shRNA-based screen, we identified nuclear export factor 3 (NXF3) as a transporter that alters the nucleocytoplasmic distribution of box C/D snoRNAs from the ribosomal protein L13a (Rpl13a) locus. Using RNA-sequencing analysis, we show that NXF3 associates not only with Rpl13a snoRNAs, but also with a broad range of box C/D and box H/ACA snoRNAs. Under homeostatic conditions, gain- or loss-of-function of NXF3, but not related family member NXF1, decreases or increases cytosolic Rpl13a snoRNAs, respectively. Furthermore, treatment with the adenylyl cyclase activator forskolin diminishes cytosolic localization of the Rpl13a snoRNAs through a mechanism that is dependent on NXF3 but not NXF1. Our results provide evidence of a new role for NXF3 in regulating the distribution of snoRNAs between the nuclear and cytoplasmic compartments.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Transporte Nucleocitoplasmático/fisiología , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ratones , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas Ribosómicas
14.
Hepatology ; 65(5): 1543-1556, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28027586

RESUMEN

Diseases of the liver related to metabolic syndrome have emerged as the most common and undertreated hepatic ailments. The cause of nonalcoholic fatty liver disease is the aberrant accumulation of lipid in hepatocytes, though the mechanisms whereby this leads to hepatocyte dysfunction, death, and hepatic fibrosis are still unclear. Insulin-sensitizing thiazolidinediones have shown efficacy in treating nonalcoholic steatohepatitis (NASH), but their widespread use is constrained by dose-limiting side effects thought to be due to activation of the peroxisome proliferator-activated receptor γ. We sought to determine whether a next-generation thiazolidinedione with markedly diminished ability to activate peroxisome proliferator-activated receptor γ (MSDC-0602) would retain its efficacy for treating NASH in a rodent model. We also determined whether some or all of these beneficial effects would be mediated through an inhibitory interaction with the mitochondrial pyruvate carrier 2 (MPC2), which was recently identified as a mitochondrial binding site for thiazolidinediones, including MSDC-0602. We found that MSDC-0602 prevented and reversed liver fibrosis and suppressed expression of markers of stellate cell activation in livers of mice fed a diet rich in trans-fatty acids, fructose, and cholesterol. Moreover, mice with liver-specific deletion of MPC2 were protected from development of NASH on this diet. Finally, MSDC-0602 directly reduced hepatic stellate cell activation in vitro, and MSDC-0602 treatment or hepatocyte MPC2 deletion also limited stellate cell activation indirectly by affecting secretion of exosomes from hepatocytes. CONCLUSION: Collectively, these data demonstrate the effectiveness of MSDC-0602 for attenuating NASH in a rodent model and suggest that targeting hepatic MPC2 may be an effective strategy for pharmacologic development. (Hepatology 2017;65:1543-1556).


Asunto(s)
Acetofenonas/uso terapéutico , Proteínas de Transporte de Anión/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Tiazolidinedionas/uso terapéutico , Acetofenonas/farmacología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Exosomas/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Distribución Aleatoria , Tiazolidinedionas/farmacología
15.
Biomed Chromatogr ; 32(7): e4235, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29516569

RESUMEN

Deficiencies of galactosylceramidase and glucocerebrosidase result in the accumulation of galactosylsphingosine (GalSph) and glucosylsphingosine (GluSph) in Krabbe and Gaucher diseases, respectively. GalSph and GluSph are useful biomarkers for both diagnosis and monitoring of treatment effects. We have developed and validated a sensitive, accurate, high-throughput assay for simultaneous determination of the concentration of GalSph and GluSph in mouse serum. GalSph and GluSph and their deuterated internal standards were extracted by protein precipitation in quantitative recoveries, baseline separated by hydrophilic interaction chromatography and detected by positive-ion electrospray mass spectrometry in multiple reaction monitoring mode. Total run time was 7 min. The lower limit of quantification was 0.2 ng/mL for both GalSph and GluSph. Sample stability, assay precision and accuracy, and method robustness were demonstrated. This method has been successfully applied to measurement of these lipid biomarkers in a natural history study in twitcher (Krabbe) mice.


Asunto(s)
Biomarcadores/sangre , Cromatografía Liquida/métodos , Enfermedad de Gaucher/sangre , Psicosina/análogos & derivados , Psicosina/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Modelos Animales de Enfermedad , Enfermedad de Gaucher/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Lineales , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Biophys J ; 113(6): 1342-1352, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28629620

RESUMEN

Extracellular vesicles (EVs) are proposed to play important roles in intercellular communication. Two classes of EVs can be distinguished based on their intracellular origin. Exosomes are generated within endosomes and released when these fuse with the plasma membrane, whereas ectosomes bud directly from the plasma membrane. Studies of EV function have been hindered by limited understanding of their biogenesis. Components of the endosomal sorting complex required for transport (ESCRT) machinery play essential roles in topologically equivalent processes at both the endosome and the plasma membrane and are consistently recovered in EVs, but whether they are generally required to produce EVs is still debated. Here, we study the effects of inhibiting the ESCRT-associated AAA+ ATPase VPS4 on EV release from cultured cells using two methods for EV recovery, differential centrifugation and polyethylene glycol precipitation followed by lectin affinity chromatography. We find that inhibiting VPS4 in HEK293 cells decreases release of EV-associated proteins and miRNA as well as the overall number of EV particles. The tetraspanins CD63 and CD9 are among the most frequently monitored EV proteins, but they differ in their subcellular localization, with CD63 primarily in endosomes and CD9 on the plasma membrane. We find that CD63 and CD9 are enriched in separable populations of EVs that are both sensitive to VPS4 inhibition. Serum stimulation increases release of both types of EVs and is also reduced by inhibiting VPS4. Taken together, our data indicate that VPS4 activity is important for generating exosomes and ectosomes, thereby generally implicating the ESCRT machinery in EV biogenesis.


Asunto(s)
Adenosina Trifosfatasas/química , Endosomas , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HEK293 , Humanos , Transporte de Proteínas
17.
J Neurosci ; 35(21): 8091-106, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26019327

RESUMEN

Niemann-Pick Type C1 (NPC1) disease is a rare neurovisceral, cholesterol-sphingolipid lysosomal storage disorder characterized by ataxia, motor impairment, progressive intellectual decline, and dementia. The most prevalent mutation, NPC1(I1061T), encodes a misfolded protein with a reduced half-life caused by ER-associated degradation. Therapies directed at stabilization of the mutant NPC1 protein reduce cholesterol storage in fibroblasts but have not been tested in vivo because of lack of a suitable animal model. Whereas the prominent features of human NPC1 disease are replicated in the null Npc1(-/-) mouse, this model is not amenable to examining proteostatic therapies. The objective of the present study was to develop an NPC1 I1061T knock-in mouse in which to test proteostatic therapies. Compared with the Npc1(-/-) mouse, this Npc1(tm(I1061T)Dso) model displays a less severe, delayed form of NPC1 disease with respect to weight loss, decreased motor coordination, Purkinje cell death, lipid storage, and premature death. The murine NPC1(I1061T) protein has a reduced half-life in vivo, consistent with protein misfolding and rapid ER-associated degradation, and can be stabilized by histone deacetylase inhibition. This novel mouse model faithfully recapitulates human NPC1 disease and provides a powerful tool for preclinical evaluation of therapies targeting NPC1 protein variants with compromised stability.


Asunto(s)
Alelos , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Glicoproteínas de Membrana/genética , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Animales , Células Cultivadas , Femenino , Técnicas de Sustitución del Gen/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Niemann-Pick C1 , Prevalencia
18.
J Biol Chem ; 290(18): 11741-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25792744

RESUMEN

Small nucleolar RNAs (snoRNAs) guide nucleotide modifications of cellular RNAs in the nucleus. We previously showed that box C/D snoRNAs from the Rpl13a locus are unexpected mediators of physiologic oxidative stress, independent of their predicted ribosomal RNA modifications. Here we demonstrate that oxidative stress induced by doxorubicin causes rapid cytoplasmic accumulation of the Rpl13a snoRNAs through a mechanism that requires superoxide and a nuclear splice variant of NADPH oxidase. RNA-sequencing analysis reveals that box C/D snoRNAs as a class are present in the cytoplasm, where their levels are dynamically regulated by NADPH oxidase. These findings suggest that snoRNAs may orchestrate the response to environmental stress through molecular interactions outside of the nucleus.


Asunto(s)
Citosol/metabolismo , NADPH Oxidasas/metabolismo , ARN Nucleolar Pequeño/metabolismo , Animales , Biocatálisis , Transporte Biológico/efectos de los fármacos , Citosol/efectos de los fármacos , Doxorrubicina/farmacología , Estrés Oxidativo/efectos de los fármacos , ARN Nucleolar Pequeño/genética , Ratas , Proteínas Ribosómicas/genética , Superóxidos/metabolismo
19.
Hum Mol Genet ; 23(22): 6022-33, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24964810

RESUMEN

Niemann-Pick C1 (NPC1) disease is a rare, neurodegenerative lysosomal cholesterol storage disorder, typified by progressive cognitive and motor function impairment. Affected individuals usually succumb to the disease in adolescence. 2-Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has emerged as a promising intervention that reduces lipid storage and prolongs survival in NPC1 disease animal models. A barrier to the development of HP-ß-CD and other treatments for NPC disease has been the lack of validated biochemical measures to evaluate efficacy. Here we explored whether cholesterol homeostatic responses resulting from HP-ß-CD-mediated redistribution of sequestered lysosomal cholesterol could provide biomarkers to monitor treatment. Upon direct CNS delivery of HP-ß-CD, we found increases in plasma 24(S)-HC in two independent NPC1 disease animal models, findings that were confirmed in human NPC1 subjects receiving HP-ß-CD. Since circulating 24(S)-HC is almost exclusively CNS-derived, the increase in plasma 24(S)-HC provides a peripheral, non-invasive measure of the CNS effect of HP-ß-CD. Our findings suggest that plasma 24(S)-HC, along with the other cholesterol-derived markers examined in this study, can serve as biomarkers that will accelerate development of therapeutics for NPC1 disease.


Asunto(s)
Colesterol/sangre , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , beta-Ciclodextrinas/administración & dosificación , 2-Hidroxipropil-beta-Ciclodextrina , Adolescente , Animales , Biomarcadores/sangre , Niño , Modelos Animales de Enfermedad , Monitoreo de Drogas/métodos , Femenino , Homeostasis , Humanos , Masculino , Ratones Endogámicos BALB C , Enfermedad de Niemann-Pick Tipo C/sangre , Adulto Joven
20.
Am J Respir Crit Care Med ; 191(3): 275-84, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25494452

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD) occurs in a minority of smokers and is characterized by intermittent exacerbations and clinical subphenotypes such as emphysema and chronic bronchitis. Although sphingolipids as a class are implicated in the pathogenesis of COPD, the particular sphingolipid species associated with COPD subphenotypes remain unknown. OBJECTIVES: To use mass spectrometry to determine which plasma sphingolipids are associated with subphenotypes of COPD. METHODS: One hundred twenty-nine current and former smokers from the COPDGene cohort had 69 distinct sphingolipid species detected in plasma by targeted mass spectrometry. Of these, 23 were also measured in 131 plasma samples (117 independent subjects) using an untargeted platform in an independent laboratory. Regression analysis with adjustment for clinical covariates, correction for false discovery rate, and metaanalysis were used to test associations between COPD subphenotypes and sphingolipids. Peripheral blood mononuclear cells were used to test associations between sphingolipid gene expression and plasma sphingolipids. MEASUREMENTS AND MAIN RESULTS: Of the measured plasma sphingolipids, five sphingomyelins were associated with emphysema; four trihexosylceramides and three dihexosylceramides were associated with COPD exacerbations. Three sphingolipids were strongly associated with sphingolipid gene expression, and 15 sphingolipid gene/metabolite pairs were differentially regulated between COPD cases and control subjects. CONCLUSIONS: There is evidence of systemic dysregulation of sphingolipid metabolism in patients with COPD. Subphenotyping suggests that sphingomyelins are strongly associated with emphysema and glycosphingolipids are associated with COPD exacerbations.


Asunto(s)
Glicoesfingolípidos/sangre , Espectrometría de Masas , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Biomarcadores/sangre , Regulación de la Expresión Génica , Humanos , Leucocitos Mononucleares/metabolismo , Fenotipo , Valor Predictivo de las Pruebas , Enfisema Pulmonar/sangre , Enfisema Pulmonar/diagnóstico , Factores de Riesgo , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Fumar/efectos adversos , Esfingomielinas/sangre , Trihexosilceramidas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA