RESUMEN
Some countries now incorporate recommendations for increased consumption of whole grain (WG) into local dietary guidelines. Cereal and pseudo-cereal grains are good sources of complex carbohydrates, dietary fiber, proteins, phytochemicals, vitamins and minerals. However, research shows that the large majority of consumers are still falling short of WG consumption goals. To address this, we are actively involved in research to help increase the WG content of processed foods without compromising on taste and texture. In order to ensure consumer trust, the advancement of process technologies in incorporating WG to produce tasty food has to go hand in hand with well designed clinical trials that confirm the health benefits resulting from diets rich in WG.
Asunto(s)
Manipulación de Alimentos , Granos Enteros/química , Comportamiento del Consumidor , Seguridad de Productos para el Consumidor , Dieta Saludable , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/análisis , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/análisis , Ingestión de Energía , Conocimientos, Actitudes y Práctica en Salud , Humanos , Política Nutricional , Valor Nutritivo , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , GustoRESUMEN
PURPOSE: An iron-enriched yeast able to lyse at body temperature was developed for iron fortification of chilled dairy products. The aim was to evaluate iron (Fe) absorption from iron-enriched yeast or ferrous sulfate added to fresh cheese. METHODS: Two stable isotope studies with a crossover design were conducted in 32 young women. Fe absorption from fresh cheese fortified with iron-enriched yeast (2.5 mg 58Fe) was compared to that from ferrous sulfate (2.5 mg 57Fe) when ingested with fresh cheese alone or with fresh cheese consumed with bread and butter. Iron absorption was determined based on erythrocyte incorporation of isotopic labels 14 days after consumption of the last test meal. RESULTS: Geometric mean fractional iron absorption from fresh cheese fortified with iron-enriched yeast consumed alone was significantly lower than from the cheese fortified with FeSO4 (20.5 vs. 28.7 %; p = 0.0007). When the fresh cheese was consumed with bread and butter, iron absorption from both fortificants decreased to 6.9 % from the iron-enriched yeast compared to 8.4 % from ferrous sulfate. The relative bioavailability of the iron-enriched yeast compared to ferrous sulfate was 0.72 for the cheese consumed alone and 0.82 for cheese consumed with bread and butter (p = 0.157). CONCLUSIONS: Iron from iron-enriched yeast was 72-82 % as well absorbed as ferrous sulfate indicating that the yeast lysed during digestion and released its iron.
Asunto(s)
Queso/análisis , Alimentos Fortificados , Hierro/farmacocinética , Levaduras , Adolescente , Disponibilidad Biológica , Supervivencia Celular/efectos de los fármacos , Estudios Cruzados , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Femenino , Compuestos Ferrosos/administración & dosificación , Compuestos Ferrosos/sangre , Compuestos Ferrosos/farmacocinética , Análisis de los Alimentos , Humanos , Absorción Intestinal , Hierro/administración & dosificación , Hierro/sangre , Isótopos de Hierro/administración & dosificación , Isótopos de Hierro/sangre , Isótopos de Hierro/farmacocinética , Hierro de la Dieta/administración & dosificación , Adulto JovenRESUMEN
The purity and composition of commercial carrageenans vary widely and, therefore, have to be checked prior to their use in the food industry. Infrared spectroscopy is an alternative method to the expensive and time-consuming wet chemical and NMR methods to characterize carrageenan samples. The use of an attenuated total reflection accessory coupled to a Fourier transform infrared spectrophotometer allows a direct analysis of the sample without any preparation step, which is an additional benefit for the rapid identification check of raw material at reception in an industrial environment. Using a set of calibration samples, three multivariate calibrations were developed to predict the total carrageenan content as well as the molar ratio of kappa- and iota-carrageenans. A validation with an independent set of samples confirmed the robustness of the calibrations and the accuracy of the predictions. The accuracies of the calibrations given by their respective standard errors of prediction are 5.6 g/100 g, and 6.1 mol %, and 6.6 mol %, respectively, for the total carrageenan content and the molar ratios of kappa- and iota-carrageenans. The total preparation and analysis time is <5 min per sample.