Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
RNA ; 26(11): 1680-1703, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32753408

RESUMEN

The human PUF-family proteins, PUM1 and PUM2, posttranscriptionally regulate gene expression by binding to a PUM recognition element (PRE) in the 3'-UTR of target mRNAs. Hundreds of PUM1/2 targets have been identified from changes in steady-state RNA levels; however, prior studies could not differentiate between the contributions of changes in transcription and RNA decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively by changing RNA stability. We also applied an in vitro selection workflow to precisely identify the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we developed a "rulebook" of key contextual features that differentiate functional versus nonfunctional PREs, allowing us to train machine learning models that accurately predict the functional regulation of RNA targets by the human PUM proteins.


Asunto(s)
ARN Mensajero/química , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Regulación de la Expresión Génica , Células HEK293 , Humanos , Aprendizaje Automático , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Secuenciación Completa del Genoma
2.
Nucleic Acids Res ; 46(1): 362-386, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29165587

RESUMEN

Human Pumilio proteins, PUM1 and PUM2, are sequence specific RNA-binding proteins that regulate protein expression. We used RNA-seq, rigorous statistical testing and an experimentally derived fold change cut-off to identify nearly 1000 target RNAs-including mRNAs and non-coding RNAs-that are functionally regulated by PUMs. Bioinformatic analysis defined a PUM Response Element (PRE) that was significantly enriched in transcripts that increased in abundance and matches the PUM RNA-binding consensus. We created a computational model that incorporates PRE position and frequency within an RNA relative to the magnitude of regulation. The model reveals significant correlation of PUM regulation with PREs in 3' untranslated regions (UTRs), coding sequences and non-coding RNAs, but not 5' UTRs. To define direct, high confidence PUM targets, we cross-referenced PUM-regulated RNAs with all PRE-containing RNAs and experimentally defined PUM-bound RNAs. The results define nearly 300 direct targets that include both PUM-repressed and, surprisingly, PUM-activated target RNAs. Annotation enrichment analysis reveal that PUMs regulate genes from multiple signaling pathways and developmental and neurological processes. Moreover, PUM target mRNAs impinge on human disease genes linked to cancer, neurological disorders and cardiovascular disease. These discoveries pave the way for determining how the PUM-dependent regulatory network impacts biological functions and disease states.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Unión al ARN/genética , ARN/genética , Regiones no Traducidas 3'/genética , Animales , Ontología de Genes , Células HEK293 , Humanos , ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
Methods ; 63(2): 110-8, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23643865

RESUMEN

Post-transcriptional regulatory mechanisms are pervasive in the control of gene expression. Regulatory sequences within transcripts can control RNA processing, localization, translation efficiency, and stability of the RNA. Regulation is mediated by a diverse set of RNA binding regulators, including proteins and RNAs, which interact with specific mRNA sequences that are often found in untranslated regions. The potential for vast post-transcriptional control exists: mammalian mRNAs contain extensive untranslated regions and their genomes encode many hundreds of RNA binding proteins and non-coding RNAs. Facile quantitative methods are necessary to study the activities and mechanisms of regulatory sequences and the RNA binding factors that recognize them. Here we discuss the design and implementation of luciferase-based reporter assays to measure the effect of regulatory RNA sequences on protein and RNA expression. Protocols are described for transfection of the reporter into cells, measurement of protein expression levels with luciferase activity assays, RNA purification, and measurement of mRNA levels by reverse-transcription and quantitative polymerase chain reaction. For each assay, troubleshooting of common problems and critical controls are discussed. We present our optimized techniques and data from studies that measure specific and direct repression (i.e. negative regulation) of mRNAs by members of the PUF family of RNA binding proteins in cultured human cells.


Asunto(s)
Regiones no Traducidas 3' , ARN Mensajero/genética , Animales , Clonación Molecular , Genes Reporteros , Células HEK293 , Humanos , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Plásmidos/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Elementos de Respuesta , Transfección
4.
J Biol Chem ; 287(43): 36370-83, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22955276

RESUMEN

PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.


Asunto(s)
Exorribonucleasas/metabolismo , Complejos Multienzimáticos/metabolismo , Biosíntesis de Proteínas/fisiología , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Bioensayo , Exorribonucleasas/genética , Células HEK293 , Humanos , Complejos Multienzimáticos/genética , Poli A/genética , Poli A/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 284(1): L140-7, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12388367

RESUMEN

Surfactant protein A (SP-A), a pulmonary lectin, plays an important role in regulating innate immune cell function. Besides accelerating pathogen clearance by pulmonary phagocytes, SP-A also stimulates alveolar macrophage chemotaxis and directed actin polymerization. We hypothesized that SP-A would also stimulate neutrophil chemotaxis. With the use of a Boyden chamber assay, we found that SP-A (0.5-25 microg/ml) did not stimulate chemotaxis of rat peripheral neutrophils or inflammatory bronchoalveolar lavage (BAL) neutrophils isolated from LPS-treated lungs. However, SP-A affected neutrophil chemotaxis toward the bacterial peptide formyl-met-leu-phe (fMLP). Surprisingly, the effect was different for the two neutrophil populations: SP-A reduced peripheral neutrophil chemotaxis toward fMLP (49 +/- 5% fMLP alone) and enhanced inflammatory BAL neutrophil chemotaxis (277 +/- 48% fMLP alone). This differential effect was not seen for the homologous proteins mannose binding lectin and complement protein 1q but was recapitulated by type IV collagen. SP-A bound both neutrophil populations comparably and did not alter formyl peptide binding. These data support a role for SP-A in regulating neutrophil migration in pulmonary tissue.


Asunto(s)
Quimiotaxis/fisiología , Neutrófilos/fisiología , Neumonía/fisiopatología , Proteína A Asociada a Surfactante Pulmonar/fisiología , Animales , Líquido del Lavado Bronquioalveolar/citología , Antígeno CD11b/metabolismo , Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Masculino , N-Formilmetionina Leucil-Fenilalanina/farmacología , Neutrófilos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Proteína A Asociada a Surfactante Pulmonar/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Formil Péptido , Receptores Inmunológicos/efectos de los fármacos , Receptores Inmunológicos/metabolismo , Receptores de Péptidos/efectos de los fármacos , Receptores de Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA