Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 37(44): 10541-10553, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28951447

RESUMEN

Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex.SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Quimiocina/deficiencia , Corteza Visual/crecimiento & desarrollo , Corteza Visual/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C , Comunicación Celular/fisiología , Cuerpos Geniculados/crecimiento & desarrollo , Cuerpos Geniculados/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Visión Monocular/fisiología
2.
PLoS One ; 18(4): e0282349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37068089

RESUMEN

Sex hormones can affect cellular physiology and modulate synaptic plasticity, but it is not always clear whether or how sex-dependent differences identified in vitro express themselves as functional dimorphisms in the brain. Historically, most experimental neuroscience has been conducted using only male animals and the literature is largely mute about whether including female mice in will introduce variability due to inherent sex differences or endogenous estrous cycles. Though this is beginning to change following an NIH directive that sex should be included as a factor in vertebrate research, the lack of information raises practical issues around how to design experimental controls and apply existing knowledge to more heterogeneous populations. Various lines of research suggest that visual processing can be affected by sex and estrous cycle stage. For these reasons, we performed a series of in vivo electrophysiological experiments to characterize baseline visual function and experience-dependent plasticity in the primary visual cortex (V1) of male and female mice. We find that sex and estrous stage have no statistically significant effect on baseline acuity measurements, but that both sex and estrous stage have can modulate two mechanistically distinct forms of experience dependent cortical plasticity. We also demonstrate that resulting variability can be largely controlled with appropriate normalizations. These findings suggest that V1 plasticity can be used for mechanistic studies focusing on how sex hormones effect experience dependent plasticity in the mammalian cortex.


Asunto(s)
Corteza Visual Primaria , Corteza Visual , Ratones , Femenino , Masculino , Animales , Corteza Visual/fisiología , Percepción Visual , Ciclo Estral , Estro , Plasticidad Neuronal/fisiología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA