Asunto(s)
Gastroenterología , Enfermedades Metabólicas , Estreñimiento , Tracto Gastrointestinal , HumanosRESUMEN
Slow changes in [Ca(2+)](i) reflect increased neuronal activity. Our study demonstrates that single-trial fast [Ca(2+)](i) imaging (≥200 Hz sampling rate) revealed peaks each of which are associated with single spike discharge recorded by consecutive voltage-sensitive dye (VSD) imaging in enteric neurones and nerve fibres. Fast [Ca(2+)](i) imaging also revealed subthreshold fast excitatory postsynaptic potentials. Nicotine-evoked [Ca(2+)](i) peaks were reduced by -conotoxin and blocked by ruthenium red or tetrodotoxin. Fast [Ca(2+)](i) imaging can be used to directly record single action potentials in enteric neurones. [Ca(2+)](i) peaks required opening of voltage-gated sodium and calcium channels as well as Ca(2+) release from intracellular stores.
Asunto(s)
Potenciales de Acción/fisiología , Calcio/fisiología , Plexo Mientérico/fisiología , Neuronas/fisiología , Compuestos de Anilina/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes/farmacología , Cobayas , Humanos , Íleon/fisiología , Masculino , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Compuestos de Piridinio/farmacología , Rojo de Rutenio/farmacología , Tetrodotoxina/farmacología , Imagen de Colorante Sensible al Voltaje , Xantenos/farmacología , omega-Conotoxinas/farmacologíaRESUMEN
Gastric motility is controlled at various levels including the enteric nervous system (ENS). The gastric ENS is involved in the regulation of accommodation reflexes as well as of the peristaltic waves which are responsible for grinding and emptying. Polarised projections consisting of ascending cholinergic and descending nitrergic muscle motor neurons make up the hard wired circuits for control of muscle activity. In an isolated flat sheet preparation of the gastric corpus we investigated stretch evoked responses. The responses at the site of the distension as well as proximal and distal to the distension consisted of a cholinergic excitation whereas a nitrergic inhibition was only observed at the site of the distension stimulus. At all sites the responses were significantly reduced by the neurotoxin tetrodotoxin suggesting a neural component. In addition the nicotinic blocker hexamethonium reduced the responses at all sites to the same degree as tetrodotoxin which indicated the strong contribution of ascending and descending cholinergic interneurons. The reflexes of isolated gastric corpus preparations to distension are dominated by excitatory responses. Only the muscle response at the site of distension exhibited an inhibitory response which is usually dominated by the cholinergic excitatory response.
Asunto(s)
Vías Eferentes/fisiología , Estómago/inervación , Estómago/fisiología , Animales , Sistema Nervioso Entérico/fisiología , Cobayas , Humanos , Neuronas Motoras/fisiologíaAsunto(s)
Estreñimiento/diagnóstico , Estreñimiento/terapia , Técnicas de Diagnóstico del Sistema Digestivo/normas , Fibras de la Dieta/uso terapéutico , Gastroenterología/normas , Fármacos Gastrointestinales/uso terapéutico , Polietilenglicoles/uso terapéutico , Estreñimiento/etiología , Alemania , HumanosRESUMEN
BACKGROUND: Stimulant laxatives are widely used to treat constipation. We investigated in human small and large intestinal preparations the effects of bis-(p-hydroxyphenyl)-pyridyl-2-methane (BHPM), the active metabolite of the laxatives bisacodyl and sodium picosulfate on smooth muscle tone and epithelial secretion. METHODS: Circular and longitudinal muscle tone of small or large intestinal preparations were recorded with isometric force transducers. Epithelial ion flux (ISC ) and tissue resistance was measured with Ussing chamber technique after apical and basolateral BHPM application to large intestinal mucosa/submucosa preparations. Studies were performed in macroscopically normal specimens from 79 patients. KEY RESULTS: BHPM concentration-dependently (0.5-5 µM) increased the tone of circular and longitudinal muscle from small to large intestine. The effect was strongest in large intestinal longitudinal muscle and smallest in small intestinal circular muscle. Increase in muscle tone was prevented by the L-type Ca++ channel blocker nifedipine but insensitive to the nerve blocker tetrodotoxin. Apical or basolateral BHPM concentration-dependently decreased or increased ISC, respectively. The KCa 1.1 (BK) channel blocker iberiotoxin reversed apical ISC decrease whereas tetrodotoxin reversed basolateral ISC increase. BHPM had no effect on tissue resistance or nerve-mediated secretory or muscle response with one exception: at the highest concentration basolateral BHPM reduced nerve-mediated secretion. CONCLUSIONS AND INTERFERENCES: BHPM enhanced mucosal secretion and muscle contractility. Results suggested that the laxative effect of BHPM was a consequence of the increase in muscle tone as well as an increased K+ secretion when acting luminally and a nerve-driven Cl- and HCO3- secretion once acting basolaterally after absorption.
Asunto(s)
Compuestos de Bencidrilo/farmacología , Bisacodilo/farmacología , Citratos/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Laxativos/farmacología , Contracción Muscular/efectos de los fármacos , Compuestos Organometálicos/farmacología , Picolinas/farmacología , Motilidad Gastrointestinal/fisiología , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/fisiología , Intestino Grueso/efectos de los fármacos , Intestino Grueso/fisiología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/fisiología , Contracción Muscular/fisiología , Técnicas de Cultivo de ÓrganosRESUMEN
BACKGROUND: Antineuronal antibodies can be associated with both gastrointestinal (GI) and brain disorders. For example, antibodies against the potassium channel subunit dipeptidyl-peptidase-like protein-6 (DPPX) bind to neurons in the central nervous system (CNS) and myenteric plexus and cause encephalitis, commonly preceded by severe unspecific GI symptoms. We therefore investigated the prevalence of antineuronal antibodies indicative of treatable autoimmune CNS etiologies in GI patients. METHODS: Serum samples of 107 patients (Crohn's disease n = 42, ulcerative colitis n = 16, irritable bowel syndrome n = 13, others n = 36) and 44 healthy controls were screened for anti-DPPX and further antineuronal antibodies using immunofluorescence on rat brain and intestine and cell-based assays. Functional effects of high-titer reactive sera were assessed in organ bath and Ussing chamber experiments and compared to non-reactive patient sera. KEY RESULTS: Twenty-one of 107 patients (19.6%) had antibodies against the enteric nervous system, and 22 (20.6%) had anti-CNS antibodies, thus significantly exceeding frequencies in healthy controls (4.5% each). Screening on cell-based assays excluded established antienteric antibodies. Antibody-positive sera were not associated with motility effects in organ bath experiments. However, they induced significant, tetrodotoxin (TTX)-insensitive secretion in Ussing chambers compared to antibody-negative sera. CONCLUSIONS & INFERENCES: Antineuronal antibodies were significantly more frequent in GI patients and associated with functional effects on bowel secretion. Future studies will determine whether such antibodies indicate patients who might benefit from additional antibody-directed therapies. However, well-characterized encephalitis-related autoantibodies such as against DPPX were not detected, underlining their rarity in routine cohorts.
Asunto(s)
Autoanticuerpos/sangre , Enfermedades Gastrointestinales/sangre , Enfermedades Gastrointestinales/epidemiología , Neuronas/metabolismo , Adulto , Anciano , Animales , Biomarcadores/sangre , Femenino , Enfermedades Gastrointestinales/diagnóstico , Cobayas , Humanos , Masculino , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Prevalencia , Ratas , Ratas WistarRESUMEN
The majority of the body's serotonin (5-HT) is produced by the gastrointestinal tract. 5-HT has several functions in the gastrointestinal tract. 5-HT is a paracrine signalling molecule released from enterochromaffin cells, a survival and proliferating factor and a neurotransmitter. The actions of 5-HT are transduced by a large family of 5-HT receptors, several of which are expressed on different gastrointestinal cell types including enteric nerves, smooth muscle and interstitial cells of Cajal (ICC). This review will summarize recent advances in understanding the role of 5-HT in regulating function of ICC, and the expression and function of 5-HT receptors on muscle and enteric nerves in human tissue. Rodent ICC express several 5-HT receptors including 5-HT(2B) receptors which regulate ICC survival and proliferation. Human smooth muscle and enteric neurons also express several 5-HT receptor subtypes. Expression and function of these receptors is significantly different from small laboratory animals. 5-HT(7) receptor activation causes relaxation of muscle, whereas 5-HT(2B) receptors increase muscle activity. The 5-HT(4) receptor appears to mediate both inhibition and activation of smooth muscle involving myogenic as well as neural actions. Despite the abundant expression of 5-HT(3) receptors in the human enteric nervous system no functional correlate has been as yet demonstrated.
Asunto(s)
Sistema Nervioso Entérico/metabolismo , Músculo Liso/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Serotonina/metabolismo , Animales , Sistema Nervioso Entérico/citología , Motilidad Gastrointestinal/fisiología , Humanos , Músculo Liso/citologíaRESUMEN
The gastrointestinal (GI) tract must balance ostensibly opposite functions. On the one hand, it must undertake the process of digestion and absorption of nutrients. At the same time, the GI tract must protect itself from potential harmful antigenic and pathogenic material. Central to these processes is the ability to 'sense' the mechanical and chemical environment in the gut wall and lumen in order to orchestrate the appropriate response that facilitates nutrient assimilation or the rapid expulsion through diarrhoea and/or vomiting. In this respect, the GI tract is richly endowed with sensory elements that monitor the gut environment. Enteric neurones provide one source of such sensory innervation and are responsible for the ability of the decentralized gut to perform complex reflex functions. Extrinsic afferents not only contribute to this reflex control, but also contribute to homeostatic mechanisms and can give rise to sensations, under certain circumstances. The enteric and extrinsic sensory mechanisms share a number of common features but also some remarkably different properties. The purpose of this review is to summarize current views on sensory processing within both the enteric and extrinsic innervation and to specifically address the pharmacology of nociceptive extrinsic sensory pathways.
Asunto(s)
Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/inervación , Mecanotransducción Celular/fisiología , Aferentes Viscerales/fisiología , Animales , Humanos , Mecanorreceptores/fisiología , Aferentes Viscerales/anatomía & histologíaRESUMEN
BACKGROUND: We previously showed that mucosal biopsy supernatants from irritable bowel syndrome patients activated neurons despite low concentrations of tryptase, histamine, and serotonin which individually would not cause spike discharge. We studied the potentiating responses between these mediators on excitability of enteric neurons. METHODS: Calcium-imaging was performed using the calcium-sensitive dye Fluo-4 AM in human submucous plexus preparations from 45 individuals. Histamine, serotonin, and tryptase were applied alone and in combinations to evaluate nerve activation which was assessed by analyzing increase in intracellular Ca2+ ([Ca2+ ]i ), the proportion of responding neurons and the product of both defined as Ca-neuroindex (NI). Protease activated receptor (PAR) 2 activating peptide, PAR2 antagonist and the serine protease-inhibitor FUT-175 were used to particularly investigate the role of proteases. KEY RESULTS: Histamine or serotonin (1 µmol/L each) evoked only few small responses (median NI [25%/75%]: 0 [0/148]; 85 [0/705] respectively). Their combined application evoked statistically similar responses (216 [21/651]). Addition of the PAR2 activator tryptase induced a significantly higher Ca-NI (1401 [867/4075]) compared to individual application of tryptase or to coapplied histamine and serotonin. This synergistic potentiation was neither mimicked by PAR2 activating peptide nor reversed by the PAR2 antagonist GB83, but abolished by FUT-175. CONCLUSIONS & INFERENCES: We observed synergistic potentiation between histamine, serotonin, and tryptase in enteric neurons, which is mediated by proteolytic activity rather than PAR2 activation. This explained neuronal activation by a cocktail of these mediators despite their low concentrations and despite a relatively small PAR2-mediated response in human submucous neurons.
Asunto(s)
Sistema Nervioso Entérico/efectos de los fármacos , Histamina/farmacología , Síndrome del Colon Irritable/metabolismo , Serotonina/farmacología , Triptasas/farmacología , Adulto , Anciano , Biopsia , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana EdadRESUMEN
Neuroimmune interactions are an integral part of gut physiology and involved in the pathogenesis of inflammatory and functional bowel disorders. Mast cells and their mediators are important conveyors in the communication from the innate enteric immune system to the enteric nervous system (ENS). However, it is not known whether a mediator cocktail released from activated human mast cells affects neural activity in the ENS. We used the Multi-Site Optical Recording Technique to image single cell activity in guinea-pig and human ENS after application of a mast cell mediator cocktail (MCMC) that was released from isolated human intestinal mucosa mast cells stimulated by IgE-receptor cross-linking. Local application of MCMC onto individual ganglia evoked an excitatory response consisting of action potential discharge. This excitatory response occurred in 31%, 38% or 11% neurons of guinea-pig submucous plexus, human submucous plexus, or guinea-pig myenteric plexus, respectively. Compound action potentials from nerve fibres or fast excitatory synaptic inputs were not affected by MCMC. This study demonstrates immunoneural signalling in the human gut and revealed for the first time that an MCMC released from stimulated human intestinal mast cells induces excitatory actions in the human and guinea-pig ENS.
Asunto(s)
Citocinas/inmunología , Sistema Nervioso Entérico/efectos de los fármacos , Intestinos/inervación , Mastocitos/metabolismo , Neuronas/efectos de los fármacos , Animales , Colorantes , Citocinas/metabolismo , Electrofisiología , Cobayas , Humanos , Procesamiento de Imagen Asistido por Computador , Intestinos/efectos de los fármacos , Intestinos/inmunología , Mastocitos/inmunología , Grabación en VideoRESUMEN
RATIONALE: The role of purinergic signaling in human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. EXPERIMENTAL APPROACH: LSCM-Fluo-4/(Ca(2+))-imaging of postsynaptic Ca(2+) transients (PSCaTs) was used as a reporter of synaptic transmission evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons (identified by HuC/D-immunoreactivity) in 235 ganglia from 107 patients; P2XR-immunoreactivity was evaluated in 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging tested effects of adenosine on fast excitatory synaptic potentials (fEPSPs). RESULTS: Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines: Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-ß,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50 = 25 µM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPßS inhibits PSCaTs (IC50 = 111 nM) in neurons without stimulatory ADPbS responses (EC50 = 960 nM). ATP or a P2X1,2,2/3 (α,ß-MeATP) agonist evokes fast, slow, biphasic Ca(2+) transients or Ca(2+) oscillations (ATP,EC50 = 400 mM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20 nM) or high (5 µM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-immunoreactivity follow the order P2X2 > P2X1 >> P2X3; P2X1 + P2X2 and P2X3 + P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7, P2Y1,2,12-14R. CONCLUSIONS: Purines are critical regulators of neurotransmission in human ENS. Purinergic signaling involves P2X1, P2X2, P2X3 channels, P2X1 + P2X2 co-localization and inhibitory P2Y or A3 receptors. These are potential novel therapeutic targets for neurogastroenterology.
Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptores Purinérgicos/metabolismo , Plexo Submucoso/efectos de los fármacos , Plexo Submucoso/fisiología , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Colectomía , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Inmunohistoquímica , Purinérgicos/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Imagen de Colorante Sensible al VoltajeRESUMEN
The present study identified and characterised myenteric neurones involved in the innervation of the gastric mucosa. We applied retrograde neuronal tracing methods by using the dye DiI (1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorat) in combination with the immunohistochemical demonstration of choline acetyltransferase (ChAT), enkephalin (ENK), neuropeptide Y (NPY), nitric oxide synthase (NOS), substance P (SP), and vasoactive intestinal peptide (VIP). This method showed distinct neurochemical coding of DiI-labelled neurones with projections to the mucosa (mucosa neurones): ChAT/- (indicating the presence of ChAT only, 32%), ChAT/NPY/ +/- VIP (22%), NOS/NPY/ +/- VIP (19%), ChAT/SP/ +/- ENK (12%), NOS/- (indicating the presence of NOS only, 8%), or ChAT/ENK (4.6%). DiI-labelled mucosa neurones did not contain calretinin, serotonin, or somatostatin. All ChAT population had primarily ascending projections, whereas the NOS populations had mainly descending projections. Both were further classified as longitudinally and circumferentially projecting neurones, the latter having projection preferences towards the lesser or greater curvature. All subpopulations exhibited projection preferences. Nitrergic projections primarily arose from cell bodies located at the lesser curvature. ChAT/- projections, which dominated the cholinergic pathway, mainly arose from cell bodies located at the greater curvature. The other major cholinergic pathway with the code ChAT/NPY/ +/- VIP consisted of neurones located mainly at the lesser curvature. The results suggest specific coding of gastric myenteric neurones with projections to the mucosa. Polarised projections consisted of ascending cholinergic and descending nitrergic neurones; the additional presence of NPY/VIP was a prominent feature in both pathways. Chemical coding, polarity, and projection preferences of enteric pathways to the gastric mucosa are remarkably different from those of other regions in the gut.
Asunto(s)
Mucosa Gástrica/inervación , Cobayas/anatomía & histología , Plexo Mientérico/fisiología , Neuronas/fisiología , Animales , Transporte Axonal , Axones/fisiología , Axones/ultraestructura , Carbocianinas , Colina O-Acetiltransferasa/análisis , Encefalinas/análisis , Colorantes Fluorescentes , Cobayas/fisiología , Inmunohistoquímica , Neuropéptido Y/análisis , Óxido Nítrico Sintasa/análisis , Sustancia P/análisis , Péptido Intestinal Vasoactivo/análisisRESUMEN
The aim of this study was to investigate the neurochemical coding of myenteric neurons in the guinea pig gastric corpus by using immunohistochemical methods. Antibodies and antisera against calbindin (CALB), calretinin (CALRET), choline acetyltransferase (ChAT), calcitonin gene-related peptide (CGRP), dopamine beta-hydroxylase (DBH), beta-endorphin (ENK), neuropeptide Y (NPY), neuron-specific enolase (NSE), nitric oxide synthase (NOS), protein gene product 9.5 (PGP), parvalbumin (PARV), serotonin (5-HT), somatostatin (SOM), substance P (SP), tyrosine hydroxylase (TH), and vasoactive intestinal peptide (VIP) were used. Double- and triple-labeling studies revealed colocalization of certain transmitters and enabled the identification of distinct subpopulations of gastric enteric neurons. NPY/VIP/NOS/ENK were present in 28% of all neurons, whereas 11% had NPY/VIP/DBH/ChAT; NOS-only neurons made up 2% of the population. The combination SP/ChAT/ENK occurred in 21% of the population, whereas SP/ChAT/ENK/CALRET and SP/CHAT/SOM/ +/- CALRET was identified in 5% and 6% of all cells, respectively. 5-HT-containing neurons comprised 2% of all cells and could be further classified by the presence of additional antigens as 5-HT/SP/(ChAT) or 5-HT/VIP/(ChAT). Approximately 21% of all neurons contained only ChAT with no additional antigen present and are referred to as ChAT/-. Gastric myenteric ganglion cells were not immunoreactive for CALB, PARV, CGRP, or TH. The results of this study indicate that gastric myenteric neurons can be characterized on the basis of different chemical coding. Neurochemical coding of corpus myenteric neurons revealed some similarities and significant differences in comparison with other regions of the gut. These differences might reflect adaptation of enteric nerves according to regional specialization and the distinct functions of the proximal stomach as a gastric reservoir.
Asunto(s)
Cobayas/metabolismo , Plexo Mientérico/química , Neuronas/química , Estómago/inervación , Animales , Epítopos , Femenino , Cobayas/anatomía & histología , Inmunohistoquímica , Intestino Delgado/inervación , Masculino , Plexo Mientérico/citología , Neurotransmisores/análisisRESUMEN
The projections of enteric neurons to the circular muscle of the guinea pig gastric corpus were investigated systematically by using the retrogradely transported fluorescent carbocyanine dye 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI), applied to the muscle layer or myenteric plexus in vitro. DiI-labeled motor neuron cell bodies were located up to 6.3 mm aboral, 17 mm oral, and up to 20 mm circumferential to the DiI application site. Labeled nerve fibers ran for long distances from the DiI application site toward the greater and lesser curvatures, where they coursed parallel to the bundles of the "gastric sling" muscle. The majority of labeled cells were located toward the lesser curvature of the stomach. Nerve cell bodies that were aboral to the DiI application site were usually small, immunoreactive for choline acetyltransferase, and, thus, were likely to be excitatory motor neurons. Neurons that were located orally were larger, fewer in number, and immunoreactive for nitric oxide synthase and, thus, were likely to be inhibitory motor neurons. Application of DiI directly to the myenteric plexus filled neurons up to 15 mm aborally and up to 21 mm orally but labeled few neurons circumferentially. All nerve cells that were filled from either the circular muscle or the myenteric plexus had Dogiel type I morphological features. These results demonstrate a clear polarity of projection of inhibitory and excitatory motor neurons and a functionally continuous innervation of the circular and gastric sling muscle layers. Nonmotor neurons in the myenteric plexus were demonstrated, but neurons with Dogiel type II morphological features are apparently absent.
Asunto(s)
Cobayas/anatomía & histología , Neuronas Motoras/fisiología , Músculo Liso/inervación , Plexo Mientérico/citología , Estómago/inervación , Animales , Carbocianinas , Femenino , Colorantes Fluorescentes , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Técnicas de Cultivo de ÓrganosRESUMEN
In the present study, a combination of immunohistochemistry and retrograde 1,1;-didodecyl-3,3,3;,3;-tetramethylindocarbocyanine perchlorate (DiI) tracing was used to unravel the morphology, distribution, and neurochemical coding of submucous and myenteric neurons with axonal projections to the mucosa of the porcine small intestine. The majority of traced neurons was located in the inner submucous plexus (ISP; 78%), whereas the remaining part was distributed between the outer submucous plexus (OSP; 10%) and myenteric plexus (MP; 12%). Among these traced neurons, some distinct neuronal populations could be distinguished according to their morphologic and neurochemical properties. In the ISP, several types of traced neurons were detected: 1) morphologic type II neurons expressing choline acetyltransferase (ChAT) immunoreactivity, calcitonin gene-related peptide (CGRP) immunoreactivity, and substance P (SP) immunoreactivity; 2) ChAT/SP-immunoreactive (-IR) small neurons; 3) vasoactive intestinal polypeptide (VIP) -IR small neurons; and 4) multidendritic ChAT/somatostatin (SOM) -IR neurons. The traced neuronal populations of the OSP and MP were similar to each other. In both plexuses, the following DiI-labelled neurons were found: 1) ChAT/CGRP/(SP)-IR type II neurons; 2) multidendritic ChAT/SP-IR neurons; and 3) multidendritic ChAT/SOM-IR neurons. Comparison of the present findings with previously obtained data concerning the mucosal innervation pattern of the intestine of small mammals, revealed significant species differences with respect to the morphologic and neurochemical features of the involved enteric neuronal classes. Although not identical, a closer resemblance between pig and human enteric nervous system seems to be at hand, as far as the anatomic organization and the presence of neurochemically identified neuronal subtypes within the enteric nervous system are concerned.
Asunto(s)
Mucosa Intestinal/inervación , Intestino Delgado/inervación , Neuronas/metabolismo , Porcinos/anatomía & histología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colina O-Acetiltransferasa/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Yeyuno/inervación , Yeyuno/metabolismo , Neuropéptido Y/metabolismo , Somatostatina/metabolismo , Especificidad de la Especie , Sustancia P/metabolismo , Péptido Intestinal Vasoactivo/metabolismoRESUMEN
By the indirect immunofluorescence method, the distribution of nitric oxide synthase (NOS)-like immunoreactivity (LI) and its possible colocalization with neuropeptide immunoreactivities, with two enzymes for the catecholamine synthesis pathway, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH), as well as the enzyme for the acetylcholine synthesis pathway, choline acetyltransferase (ChAT) were studied in the anterior pelvic ganglion (APG), the inferior mesenteric ganglion (IMG) and the hypogastric nerve in the male guinea pig. The analyses were performed on tissues from intact animals, as well as after compression/ligation or cut of the hypogastric nerve. In some cases the colonic nerves were also cut. Analysis of the APG showed two main neuronal cell populations, one group containing NOS localized in the caudal part of the APG and one TH-positive group lacking NOS in its cranial part. The majority of the NOS-positive neurons contained ChAT-LI. Some NOS-positive cells did not contain detectable ChAT, but all ChAT-positive cells contained NOS. NOS neurons often contained peptides, including vasoactive intestinal peptide (VIP), neuropeptide tyrosine (NPY), somatostatin (SOM) and/or calcitonin gene-related peptide (CGRP). Some NOS cells expressed DBH, but never TH. The second cell group, characterized by absence of NOS, contained TH, mostly DBH and NPY and occasionally SOM and CGRP. Some TH-positive neurons lacked DBH. In the IMG, the NOS-LI was principally in nerve fibers, which were of two types, one consisting of strongly immunoreactive, coarse, varicose fibers with a patchy distribution, the other one forming fine, varicose, weakly immunoreactive fibers with a more general distribution. In the coarse networks, NOS-LI coexisted with VIP- and DYN-LI and the fibers surrounded mainly the SOM-containing noradrenergic principal ganglion cells. A network of ChAT-positive, often NOS-containing nerve fibers, surrounded the principal neurons. Occasional neuronal cell bodies in the IMG contained both NOS- and ChAT-LI. Accumulation of NOS was observed, both caudal and cranial, to a crush of the hypogastric nerve. VIP accumulated mainly on the caudal side and often coexisted with NOS. NPY accumulated on both sides of the crush, but mainly on the cranial side, and ENK was exclusively on the cranial side. Neither peptide coexisted with NOS. Both substance P (SP) and CGRP showed the strongest accumulation on the cranial side, possibly partly colocalized with NOS. It is concluded that the APG in the male guinea-pig consists of two major complementary neuron populations, the cholinergic neurons always containing NOS and the noradrenergic neurons containing TH and DBH. Some NOS neurons lacked ChAT and could represent truly non-adrenergic, non-cholinergic neurons. In addition, there may be a small dopaminergic neuron population, that is containing TH but lacking DBH. The cholinergic NOS neurons contain varying combinations of peptides. The noradrenergic population often contained NPY and occasionally SOM and CGRP. It is suggested that NO may interact with a number of other messenger molecules to play a role both within the APG and IMG and also in the projection areas of the APG.