Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(15): 6616-6627, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569050

RESUMEN

While the extent of environmental contamination by per- and polyfluoroalkyl substances (PFAS) has mobilized considerable efforts around the globe in recent years, publicly available data on PFAS in Europe were very limited. In an unprecedented experiment of "expert-reviewed journalism" involving 29 journalists and seven scientific advisers, a cross-border collaborative project, the "Forever Pollution Project" (FPP), drew on both scientific methods and investigative journalism techniques such as open-source intelligence (OSINT) and freedom of information (FOI) requests to map contamination across Europe, making public data that previously had existed as "unseen science". The FPP identified 22,934 known contamination sites, including 20 PFAS manufacturing facilities, and 21,426 "presumptive contamination sites", including 13,745 sites presumably contaminated with fluorinated aqueous film-forming foam (AFFF) discharge, 2911 industrial facilities, and 4752 sites related to PFAS-containing waste. Additionally, the FPP identified 231 "known PFAS users", a new category for sites with an intermediate level of evidence of PFAS use and considered likely to be contamination sources. However, the true extent of contamination in Europe remains significantly underestimated due to a lack of comprehensive geolocation, sampling, and publicly available data. This model of knowledge production and dissemination offers lessons for researchers, policymakers, and journalists about cross-field collaborations and data transparency.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental , Europa (Continente) , Comercio
2.
Glob Chang Biol ; 29(12): 3240-3255, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36943240

RESUMEN

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.


Asunto(s)
Ecosistema , Contaminación Ambiental , Biodiversidad , Ecología , Conservación de los Recursos Naturales , Cambio Climático
3.
Crit Rev Food Sci Nutr ; 63(28): 9425-9435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35585831

RESUMEN

Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.


Asunto(s)
Contaminación de Alimentos , Embalaje de Alimentos , Humanos , Contaminación de Alimentos/análisis , Sustancias Peligrosas/análisis , Bases de Datos Factuales , Plásticos
4.
Environ Sci Technol ; 57(31): 11583-11594, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494593

RESUMEN

The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After 15 years of passive air monitoring (2003-2019), MONET is the first network to produce sufficient data for the analysis of continuous long-term temporal trends of POPs in air across the entire European continent. This study reports long-term concentrations of 20 POPs monitored at 32 sites in 27 European countries. As of January 1, 2019, the concentration ranges (pg/m3) were 1.1-52.8 (∑6PCB), 0.3-8.5 (∑12dl-PCB), 0.007-0.175 (∑17PCDD/F), 0.02-2.2 (∑9PBDE), 0.4-24.7 (BDE 209), 0.5-247 (∑6DDT), 1.7-818 (∑4HCH), 15.8-74.7 (HCB), and 5.9-21.5 (PeCB). Temporal trends indicate that concentrations of most POPs have declined significantly over the past 15 years, with median annual decreases ranging from -8.0 to -11.5% (halving times of 6-8 years) for ∑6PCB, ∑17PCDD/F, HCB, PeCB, and ∑9PBDE. Furthermore, no statistically significant differences were observed in either the trends or the concentrations of specific POPs at sites in Western Europe (WEOG) compared to sites in Central and Eastern Europe (CEE), which suggests relatively uniform compound-specific distribution and removal at the continental scale.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Bifenilos Policlorados/análisis , Contaminantes Orgánicos Persistentes , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Europa (Continente) , Contaminantes Ambientales/análisis
5.
Environ Sci Technol ; 57(48): 19066-19077, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37943968

RESUMEN

Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.


Asunto(s)
Conflicto de Intereses , Ecosistema , Humanos , Contaminación Ambiental , Biodiversidad
6.
Arch Toxicol ; 97(5): 1267-1283, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36952002

RESUMEN

The assessment of persistence (P), bioaccumulation (B), and toxicity (T) of a chemical is a crucial first step at ensuring chemical safety and is a cornerstone of the European Union's chemicals regulation REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Existing methods for PBT assessment are overly complex and cumbersome, have produced incorrect conclusions, and rely heavily on animal-intensive testing. We explore how new-approach methodologies (NAMs) can overcome the limitations of current PBT assessment. We propose two innovative hazard indicators, termed cumulative toxicity equivalents (CTE) and persistent toxicity equivalents (PTE). Together they are intended to replace existing PBT indicators and can also accommodate the emerging concept of PMT (where M stands for mobility). The proposed "toxicity equivalents" can be measured with high throughput in vitro bioassays. CTE refers to the toxic effects measured directly in any given sample, including single chemicals, substitution products, or mixtures. PTE is the equivalent measure of cumulative toxicity equivalents measured after simulated environmental degradation of the sample. With an appropriate panel of animal-free or alternative in vitro bioassays, CTE and PTE comprise key environmental and human health hazard indicators. CTE and PTE do not require analytical identification of transformation products and mixture components but instead prompt two key questions: is the chemical or mixture toxic, and is this toxicity persistent or can it be attenuated by environmental degradation? Taken together, the proposed hazard indicators CTE and PTE have the potential to integrate P, B/M and T assessment into one high-throughput experimental workflow that sidesteps the need for analytical measurements and will support the Chemicals Strategy for Sustainability of the European Union.


Asunto(s)
Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Bioacumulación , Unión Europea , Medición de Riesgo/métodos
7.
Environ Sci Technol ; 56(16): 11172-11179, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35916421

RESUMEN

It is hypothesized that environmental contamination by per- and polyfluoroalkyl substances (PFAS) defines a separate planetary boundary and that this boundary has been exceeded. This hypothesis is tested by comparing the levels of four selected perfluoroalkyl acids (PFAAs) (i.e., perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) in various global environmental media (i.e., rainwater, soils, and surface waters) with recently proposed guideline levels. On the basis of the four PFAAs considered, it is concluded that (1) levels of PFOA and PFOS in rainwater often greatly exceed US Environmental Protection Agency (EPA) Lifetime Drinking Water Health Advisory levels and the sum of the aforementioned four PFAAs (Σ4 PFAS) in rainwater is often above Danish drinking water limit values also based on Σ4 PFAS; (2) levels of PFOS in rainwater are often above Environmental Quality Standard for Inland European Union Surface Water; and (3) atmospheric deposition also leads to global soils being ubiquitously contaminated and to be often above proposed Dutch guideline values. It is, therefore, concluded that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded. Levels of PFAAs in atmospheric deposition are especially poorly reversible because of the high persistence of PFAAs and their ability to continuously cycle in the hydrosphere, including on sea spray aerosols emitted from the oceans. Because of the poor reversibility of environmental exposure to PFAS and their associated effects, it is vitally important that PFAS uses and emissions are rapidly restricted.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Exposición a Riesgos Ambientales , Fluorocarburos/análisis , Suelo , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 56(10): 6232-6242, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34608797

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of substances for which there are widespread concerns about their extreme persistence in combination with toxic effects. It has been argued that PFAS should only be employed in those uses that are necessary for health or safety or are critical for the functioning of society and where no alternatives are available ("essential-use concept"). Implementing the essential-use concept requires a sufficient understanding of the current uses of PFAS and of the availability, suitability, and hazardous properties of alternatives. To illustrate the information requirements under the essential-use concept, we investigate seven different PFAS uses, three in consumer products and four industrial applications. We investigate how much information is available on the types and functions of PFAS in these uses, how much information is available on alternatives, their performance and hazardous properties and, finally, whether this information is sufficient as a basis for deciding on the essentiality of a PFAS use. The results show (i) the uses of PFAS are highly diverse and information on alternatives is often limited or lacking; (ii) PFAS in consumer products often are relatively easy to replace; (iii) PFAS uses in industrial processes can be highly complex and a thorough evaluation of the technical function of each PFAS and of the suitability of alternatives is needed; (iv) more coordination among PFAS manufacturers, manufacturers of alternatives to PFAS, users of these materials, government authorities, and other stakeholders is needed to make the process of phasing out PFAS more transparent and coherent.


Asunto(s)
Fluorocarburos
9.
Environ Sci Technol ; 56(8): 4702-4710, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35353522

RESUMEN

Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.


Asunto(s)
Compuestos Orgánicos , Contaminantes del Suelo , Adsorción , Carbono/química , Compuestos Orgánicos/química , Suelo , Contaminantes del Suelo/análisis , Agua/química
10.
Environ Res ; 213: 113675, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35700762

RESUMEN

Humans are widely exposed to phthalates and their novel substitutes, and considering the negative health effects associated with some phthalates, it is crucial to understand population levels and exposure determinants. This study is focused on 300 urine samples from teenagers (aged 12-17) and 300 from young adults (aged 18-37) living in Czechia collected in 2019 and 2020 to assess 17 plasticizer metabolites as biomarkers of exposure. We identified widespread phthalate exposure in the study population. The diethyl phthalate metabolite monoethyl phthalate (MEP) and three di (2-ethylhexyl) phthalate metabolites were detected in the urine of >99% of study participants. The highest median concentrations were found for metabolites of low-molecular-weight (LMW) phthalates: mono-n-butyl phthalate (MnBP), monoisobutyl phthalate (MiBP) and MEP (60.7; 52.6 and 17.6 µg/L in young adults). 1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) metabolites were present in 68.2% of the samples with a median of 1.24 µg/L for both cohorts. Concentrations of MnBP and MiBP were similar to other European populations, but 5-6 times higher than in populations in North America. We also observed large variability in phthalate exposures within the study population, with 2-3 orders of magnitude differences in urinary metabolites between high and low exposed individuals. The concentrations varied with season, gender, age, and lifestyle factors. A relationship was found between high levels of MEP and high overall use of personal care products (PCPs). Cluster analysis suggested that phthalate exposures depend on season and multiple lifestyle factors, like time spent indoors and use of PCPs, which combine to lead to the observed widespread presence of phthalate metabolites in both study populations. Participants who spent more time indoors, particularly noticeably during colder months, had higher levels of high-molecular weight phthalate metabolites, whereas participants with higher PCP use, particularly women, tended to have higher concentration of LMW phthalate metabolites.


Asunto(s)
Cosméticos , Dietilhexil Ftalato , Contaminantes Ambientales , Ácidos Ftálicos , Adolescente , Cosméticos/análisis , Dietilhexil Ftalato/orina , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/orina , Femenino , Humanos , Estilo de Vida , Ácidos Ftálicos/orina , Adulto Joven
11.
Bioessays ; 42(7): e1900238, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302008

RESUMEN

The terms "eustress" and "distress" are widely used throughout the scientific literature. As of February 2020, 203 items in the Web of Science show up in a search for "eustress," however, there are almost 16 400 items found in a search for the term "distress." Based on the reasoning in this article, however, it is believed there is no such thing as eustress or distress. The adaptation reaction of an organism under stress is not intrinsically good or bad, and its effect on health or performance depends on a plethora of other interactions of the body with the environment as well as on the history of such interactions. The vagueness of the terms "eustress/distress" has historically led to vast differences in the perception and application of the terms across disciplines. While psychology or sociology perceive eustress as something inextricably linked to positive perception and enhanced cognition, biomedicine perceives eustress as generally associated with better survival, health, or increased longevity, no matter how the event is perceived. In this paper, the authors review the current understanding of the term "eustress" in different fields, discuss possible implications of its misleading use, and suggest that the term may be replaced by "stress" only.


Asunto(s)
Cognición , Estrés Psicológico , Humanos
12.
Environ Sci Technol ; 55(2): 1036-1044, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33372520

RESUMEN

Pyrrolizidine alkaloids (PAs) are found to be toxic pollutants emitted into the environment by numerous plant species, resulting in contamination. In this article, we investigate the occurrence of PAs in the aquatic environment of small Swiss streams combining two different approaches. Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites produced by numerous plant species. Although they were classified as persistent and mobile and found to be emitted into the environment, their occurrence in surface waters is largely unknown. Therefore, we performed a retrospective data analysis of two extensive HRMS campaigns each covering five small streams in Switzerland over the growing season. All sites were contaminated with up to 12 individual PAs and temporal detection frequencies between 36 and 87%. Individual PAs were in the low ng/L range, but rain-induced maximal total PA concentrations reached almost 100 ng/L in late spring and summer. Through PA patterns in water and plants, several species were tentatively identified as the source of contamination, with Senecio spp. and Echium vulgare being the most important. Additionally, two streams were monitored, and PAs were quantified with a newly developed, faster, and more sensitive LC-MS/MS method to distinguish different plant-based and indirect human PA sources. A distinctly different PA fingerprint in aqueous plant extracts pointed to invasive Senecio inaequidens as the main source of the surface water contamination at these sites. Results indicate that PA loads may increase if invasive species are sufficiently abundant.


Asunto(s)
Alcaloides de Pirrolicidina , Cromatografía Liquida , Humanos , Estudios Retrospectivos , Suiza , Espectrometría de Masas en Tándem
13.
Environ Sci Technol ; 55(14): 9413-9424, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33095578

RESUMEN

The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After a decade of passive air monitoring (2008-2019), MONET is the first network to produce sufficient data for the analysis of long-term temporal trends of POPs in the African atmosphere. This study reports concentrations of 20 POPs (aldrin, chlordane, chlordecone, DDT, dieldrin, endrin, endosulfan, HBCDD, HCB, HCHs, heptachlor, hexabromobiphenyl, mirex, PBDEs, PCBs, PCDDs, PCDFs, PeCB, PFOA, and PFOS) monitored in 9 countries (Congo, Ghana, Ethiopia, Kenya, Mali, Mauritius, Morocco, Nigeria, and Sudan). As of January 1, 2019, concentrations were in the following ranges (pg/m3): 0.5-37.7 (∑6PCB), 0.006-0.724 (∑17PCDD/F), 0.05-5.5 (∑9PBDE), 0.6-11.3 (BDE 209), 0.1-1.8 (∑3HBCDD), 1.8-138 (∑6DDT), 0.1-24.3 (∑3endosulfan), 0.6-14.6 (∑4HCH), 9.1-26.4 (HCB), 13.8-18.2 (PeCB). Temporal trends indicate that concentrations of many POPs (PCBs, DDT, HCHs, endosulfan) have declined significantly over the past 10 years, though the rate was slow at some sites. Concentrations of other POPs such as PCDD/Fs and PBDEs have not changed significantly over the past decade and are in fact increasing at some sites, attributed to the prevalence of open burning of waste (particularly e-waste) across Africa. Modeled airflow back-trajectories suggest that the elevated concentrations at some sites are primarily due to sustained local emissions, while the low concentrations measured at Mt. Kenya represent the continental background level and are primarily influenced by long-range transport.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Clorados , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Contaminantes Atmosféricos/análisis , Dibenzofuranos , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Nigeria , Contaminantes Orgánicos Persistentes , Bifenilos Policlorados/análisis
14.
Environ Sci Technol ; 55(19): 12755-12765, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34519210

RESUMEN

Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles remain to addressing worldwide contamination by these chemicals and their associated impacts on environmental quality and health. Here, we propose six urgent questions relevant to science, technology, and policy that must be tackled to address the "PFAS problem": (1) What are the global production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in the environment? (3) How can we make measuring PFAS globally accessible? (4) How can we safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of PFAS exposure? (6) Who pays the costs of PFAS contamination? The importance of each question and barriers to progress are briefly described, and several potential paths forward are proposed. Given the diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of fundamental information, and the inequity of the health and environmental impacts from PFAS contamination, there is a need for scientific and regulatory communities to work together, with cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the environment.


Asunto(s)
Fluorocarburos , Humanos
15.
Bioessays ; 41(6): e1900014, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31087675

RESUMEN

Most contemporary models of disease development consider the interaction between genotype and environment as static. The authors argue that because time is a key factor in genotype-environment interaction, this approach oversimplifies the pathology analysis and may lead to wrong conclusions. In reviewing the field, the authors suggest that the history of genotype-environment interactions plays an important role in the development of diseases and that this history may be analyzed using the phenotype as a proxy. Furthermore, a theoretical and experimental framework is proposed based on the assumption that phenotypes do not change from one to another randomly but are interconnected and follow certain phenotype trajectories. It then follows that analysis of such phenotype trajectories might be useful to predict the future phenotypes including the onset of disease. In addition, an analysis of phenotype trajectories can be subsequently used to choose better control subjects in comparative studies reducing noise and bias in studies investigating disease mechanisms.


Asunto(s)
Enfermedad/genética , Interacción Gen-Ambiente , Genotipo , Modelos Genéticos , Patología/métodos , Envejecimiento/genética , Sesgo , Métodos Epidemiológicos , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Tiempo
16.
Environ Sci Technol ; 54(20): 12820-12828, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33043667

RESUMEN

Fluoropolymers are a group of polymers within the class of per- and polyfluoroalkyl substances (PFAS). The objective of this analysis is to evaluate the evidence regarding the environmental and human health impacts of fluoropolymers throughout their life cycle(s). Production of some fluoropolymers is intimately linked to the use and emissions of legacy and novel PFAS as polymer processing aids. There are serious concerns regarding the toxicity and adverse effects of fluorinated processing aids on humans and the environment. A variety of other PFAS, including monomers and oligomers, are emitted during the production, processing, use, and end-of-life treatment of fluoropolymers. There are further concerns regarding the safe disposal of fluoropolymers and their associated products and articles at the end of their life cycle. While recycling and reuse of fluoropolymers is performed on some industrial waste, there are only limited options for their recycling from consumer articles. The evidence reviewed in this analysis does not find a scientific rationale for concluding that fluoropolymers are of low concern for environmental and human health. Given fluoropolymers' extreme persistence; emissions associated with their production, use, and disposal; and a high likelihood for human exposure to PFAS, their production and uses should be curtailed except in cases of essential uses.


Asunto(s)
Fluorocarburos , Salud Ambiental , Fluorocarburos/análisis , Humanos , Polietileno
17.
Environ Health ; 19(1): 25, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122363

RESUMEN

Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.


Asunto(s)
Contaminación de Alimentos/análisis , Embalaje de Alimentos/métodos , Sustancias Peligrosas/efectos adversos , Humanos , Plásticos/efectos adversos
18.
Proc Natl Acad Sci U S A ; 114(10): E1756-E1765, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223482

RESUMEN

Dissolved organic matter (DOM) strongly influences the properties and fate of engineered nanoparticles (ENPs) in aquatic environments. There is an extensive body of experiments on interactions between DOM and ENPs and also larger particles. [We denote particles on the nano- and micrometer scale as particulate matter (PM).] However, the experimental results are very heterogeneous, and a general mechanistic understanding of DOM-PM interactions is still missing. In this situation, recent reviews have called to expand the range of DOM and ENPs studied. Therefore, our work focuses on the diversity of the DOM and PM types investigated. Because the experimental results reported in the literature are highly disparate and difficult to structure, a new format of organizing, visualizing, and interpreting the results is needed. To this end, we perform a network analysis of 951 experimental results on DOM-PM interactions, which enabled us to analyze and quantify the diversity of the materials investigated. The diversity of the DOM-PM combinations studied has mostly been decreasing over the last 25 y, which is driven by an increasing focus on several frequently investigated materials, such as DOM isolated from fresh water, DOM in whole-water samples, and TiO2 and silver PM. Furthermore, there is an underrepresentation of studies into the effect of particle coating on PM-DOM interactions. Finally, it is of great importance that the properties of DOM used in experiments with PM, in particular the molecular weight and the content of aromatic and aliphatic carbon, are reported more comprehensively and systematically.


Asunto(s)
Monitoreo del Ambiente , Nanopartículas/química , Contaminantes Químicos del Agua/química , Carbono/química , Modelos Químicos , Peso Molecular , Nanopartículas/toxicidad , Compuestos Orgánicos/química , Compuestos Orgánicos/toxicidad , Plata/química , Solubilidad , Agua/química , Contaminantes Químicos del Agua/toxicidad
19.
Chimia (Aarau) ; 74(3): 129-135, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32197670

RESUMEN

To protect themselves, plants can produce toxic secondary metabolites (phytotoxins) that appear with widely varying structures and negative effects. These phytotoxins often show similar properties as known aquatic micropollutants in terms of mobility, persistence, toxicity, and possibly also ecotoxicity. However, their occurrence in surface waters remains largely unknown, which is also due to unknown ability of available screening approaches to detect them. Therefore, we performed a target and suspect screening based on a persistence-mobility prioritization for phytotoxins in small Swiss creeks using high resolution mass spectrometry. In total, three of 26 targets were detected, three of 78 suspects tentatively identified, and six suspects fully confirmed by reference standards. To the best of our knowledge, it is the first time that three different plant secondary metabolite classes are detected in the same surface water sample. Estrogenic isoflavones were detected at 73% of the sites with formononetin as main toxin, which is in agreement with previous studies. Furthermore, pyrrolizidine alkaloids and the indole alkaloid gramine were detected. Especially pyrrolizidine alkaloids might be critical due to their production by various plants including the invasive Senecio inaequidens, and their known importance in food and feed safety. Based on these first screening results, different phytotoxin classes should be assessed for their ecotoxicological effects and considered in future water monitoring.


Asunto(s)
Agua/química , Espectrometría de Masas , Alcaloides de Pirrolicidina , Senecio , Toxinas Biológicas
20.
Drug Metab Rev ; 51(3): 314-329, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31116073

RESUMEN

Phthalates are a class of compounds that have been extensively used as plasticizers in different applications. Several phthalates have been recognized as substances of very high concern (SVHCs) in the EU, because of their toxicity for reproduction. However, high amounts of other phthalates are still produced and imported in the European Economic Area. In China and the US, recent studies show increasing concentrations of several phthalates in the air and in human urine, respectively. The understanding of phthalate absorption, distribution, metabolism, and elimination ('pharmacokinetics') in the organism is still limited. Specifically, phthalate partitioning among tissues is insufficiently understood. Here, we estimate partition coefficient (PC) values for different phthalates by using five algorithms and compare them to experimental (in-vivo and in-vitro) PC values. In addition, we review all pharmacokinetic steps for phthalates in human and rat, based on data from 133 peer-reviewed publications. We analyze the factors that determine phthalate partitioning and pharmacokinetics. Four processes are particularly relevant to phthalate distribution: protein binding, ionization, passive partitioning, and metabolism in different tissues. The interplay of these processes needs to be better represented in methods for determining the PC values of phthalates. The hydrophobicity of phthalates affects all pharmacokinetic steps. The exposure route has an influence on specific steps of phthalate pharmacokinetics but generally does not affect the pattern of metabolites in urine. The age of the organism has an influence on phthalate metabolism. More studies on the protein-bound fraction of phthalates in plasma and pharmacokinetic studies following inhalation and dermal exposure are desirable.


Asunto(s)
Ácidos Ftálicos/farmacocinética , Animales , Humanos , Ácidos Ftálicos/química , Plastificantes/química , Plastificantes/farmacocinética , Ratas , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA