Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Antimicrob Agents Chemother ; 65(11): e0174420, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34424046

RESUMEN

Despite decades of research, tuberculosis remains a leading cause of death from a single infectious agent. Spectinamides are a promising novel class of antituberculosis agents, and the lead spectinamide 1810 has demonstrated excellent efficacy, safety, and drug-like properties in numerous in vitro and in vivo assessments in mouse models of tuberculosis. In the current dose ranging and dose fractionation study, we used 29 different combinations of dose level and dosing frequency to characterize the exposure-response relationship for spectinamide 1810 in a mouse model of Mycobacterium tuberculosis infection and in healthy animals. The obtained data on 1810 plasma concentrations and counts of CFU in lungs were analyzed using a population pharmacokinetic/pharmacodynamic (PK/PD) approach as well as classical anti-infective PK/PD indices. The analysis results indicate that there was no difference in the PK of 1810 in infected compared to healthy, uninfected animals. The PK/PD index analysis showed that bacterial killing of 1810 in mice was best predicted by the ratio of maximum free drug concentration to MIC (fCmax/MIC) and the ratio of the area under the free concentration-time curve to the MIC (fAUC/MIC) rather than the cumulative percentage of time that the free drug concentration is above the MIC (f%TMIC). A novel PK/PD model with consideration of postantibiotic effect could adequately describe the exposure-response relationship for 1810 and supports the notion that the in vitro observed postantibiotic effect of this spectinamide also translates to the in vivo situation in mice. The obtained results and pharmacometric model for the exposure-response relationship of 1810 provide a rational basis for dose selection in future efficacy studies of this compound against M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antibacterianos , Antituberculosos/farmacología , Modelos Animales de Enfermedad , Ratones , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico
2.
Artículo en Inglés | MEDLINE | ID: mdl-30745397

RESUMEN

AN12855 is a direct, cofactor-independent inhibitor of InhA in Mycobacterium tuberculosis In the C3HeB/FeJ mouse model with caseous necrotic lung lesions, AN12855 proved efficacious with a significantly lower resistance frequency than isoniazid. AN12855 drug levels were better retained in necrotic lesions and caseum where the majority of hard to treat, extracellular bacilli reside. Owing to these combined attributes, AN12855 represents a promising alternative to the frontline antituberculosis agent isoniazid.


Asunto(s)
Antituberculosos/farmacología , Compuestos Aza/farmacología , Compuestos de Boro/farmacología , Hidrocarburos Fluorados/farmacología , Inhibinas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Femenino , Isoniazida/farmacología , Pulmón/patología , Ratones , Ratones Endogámicos C3H , Pruebas de Sensibilidad Microbiana , Tuberculosis Pulmonar/microbiología
3.
J Antimicrob Chemother ; 72(3): 770-777, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27999020

RESUMEN

Objectives: New drug regimens employing combinations of existing and experimental antimicrobial agents are needed to shorten treatment of tuberculosis (TB) in humans. The spectinamides are narrow-spectrum semisynthetic analogues of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead 1599, have been previously shown to exhibit a promising therapeutic profile in mice as single agents. Here we explore the in vivo activity of lead spectinamides when combined with other agents. Methods: The efficacy of 1599 or 1810 was tested in combination in three increasingly advanced TB mouse models. Mice were infected by aerosol and allowed to establish acute or chronic infection, followed by treatment (≤4 weeks) with the spectinamides alone or in two- and three-drug combination regimens with existing and novel therapeutic agents. Bacteria were enumerated from lungs by plating for cfu. Results: Herein we show the following: (i) 1599 exhibits additive or synergistic activity with most of the first-line agents; (ii) 1599 in combination with rifampicin and pyrazinamide or with bedaquiline and pyrazinamide promotes significantly improved efficacy in the high-dose aerosol model; (iii) 1599 enhances efficacy of rifampicin or pyrazinamide in chronically infected BALB/c mice; and (iv) 1599 is synergistic when administered in combination with rifampicin and pyrazinamide in the C3HeB/FeJ mouse model showing caseous necrotic pulmonary lesions. Conclusions: Spectinamides were effective partner agents for multiple anti-TB agents including bedaquiline, rifampicin and pyrazinamide. None of these in vivo synergistic interactions was predicted from in vitro MIC chequerboard assays. These data support further development of the spectinamides as combination partners with existing and experimental anti-TB agents.


Asunto(s)
Antituberculosos/uso terapéutico , Espectinomicina/química , Espectinomicina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Pulmón/efectos de los fármacos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/uso terapéutico , Quinolinas/uso terapéutico , Rifampin/uso terapéutico , Tuberculosis/microbiología
4.
Bioorg Med Chem Lett ; 26(2): 388-391, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26711150

RESUMEN

Pretomanid (PA-824) is an important nitroimidazole antitubercular agent in late stage clinical trials. However, pretomanid is limited by poor solubility and high protein binding, which presents opportunities for improvement in its physiochemical properties. Conversely, the oxazolidinone linezolid has excellent physicochemical properties and has recently shown impressive activity for the treatment of drug resistant tuberculosis. In this study we explore if incorporation of the outer ring elements found in first and second generation oxazolidinones into the nitroimidazole core of pretomanid can be used to improve its physicochemical and antitubercular properties. The synthesis of pretomanid outer oxazolidinone ring hybrids was successfully performed producing hybrids that maintained antitubercular activity and had improved in vitro physicochemical properties. Three lead compounds were identified and evaluated in a chronic model of tuberculosis infection in mice. However, the compounds lacked efficacy suggesting that portions of PA-824 tail not found in the hybrid molecules are required for in vivo efficacy.


Asunto(s)
Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Nitroimidazoles/uso terapéutico , Oxazolidinonas/uso terapéutico , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Enfermedad Crónica , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Nitroimidazoles/síntesis química , Nitroimidazoles/química , Oxazolidinonas/síntesis química , Oxazolidinonas/química
5.
Nat Chem Biol ; 8(4): 334-41, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22344175

RESUMEN

New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis are urgently needed. We report on the identification of an adamantyl urea compound that shows potent bactericidal activity against M. tuberculosis and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm, where they are synthesized to the periplasmic side of the plasma membrane and are in turn transferred onto cell wall arabinogalactan or used in the formation of virulence-associated, outer membrane, trehalose-containing glycolipids. Whole-genome sequencing of spontaneous-resistant mutants of M. tuberculosis selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane.


Asunto(s)
Adamantano/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacología , Membrana Celular/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Ácidos Micólicos/metabolismo , Compuestos de Fenilurea/farmacología , Adamantano/química , Adamantano/farmacología , Antibacterianos/farmacocinética , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Factores Cordón , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Compuestos de Fenilurea/química , Bibliotecas de Moléculas Pequeñas , Trehalosa/metabolismo
6.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798577

RESUMEN

The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.

7.
Appl Environ Microbiol ; 79(3): 768-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23160121

RESUMEN

Since the peptidoglycan isolated from Mycobacterium spp. is refractory to commercially available murolytic enzymes, possibly due to the presence of various modifications found on this peptidoglycan, the utility of a mycobacteriophage-derived murolytic enzyme was assessed for an analysis of peptidoglycan from mycobacteria. We cloned, expressed, and purified the lysA gene product, a protein with homology to known peptidoglycan-degrading amidases, from bacteriophage Ms6. The recombinant protein was shown to cleave the bond between l-Ala and d-muramic acid of muramyl pentapeptide and to release up to 70% of the diaminopimelic acid present in the isolated mycobacterial cell wall. In contrast to lysozyme, which, in culture, inhibits the growth of both Mycobacterium smegmatis and Mycobacterium tuberculosis, LysA had no effect on the growth of either species. However, the enzyme is useful for solubilizing the peptide chains of isolated mycobacterial peptidoglycan for analysis. The data indicate that the stem peptides from M. smegmatis are heavily amidated, containing few free carboxylic acids, regardless of the cross-linking status.


Asunto(s)
Amidohidrolasas/metabolismo , Pared Celular , Micobacteriófagos/enzimología , Mycobacterium/efectos de los fármacos , Peptidoglicano/metabolismo , Clonación Molecular , Ácido Diaminopimélico/metabolismo , Expresión Génica , Micobacteriófagos/genética
8.
Bioorg Med Chem ; 21(9): 2587-99, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23498915

RESUMEN

Out of the prominent global ailments, tuberculosis (TB) is still one of the leading causes of death worldwide due to infectious disease. Development of new drugs that shorten the current tuberculosis treatment time and have activity against drug resistant strains is of utmost importance. Towards these goals we have focused our efforts on developing novel anti-TB compounds with the general structure of 1-adamantyl-3-phenyl urea. This series is active against Mycobacteria and previous lead compounds were found to inhibit the membrane transporter MmpL3, the protein responsible for mycolic acid transport across the plasma membrane. However, these compounds suffered from poor in vitro pharmacokinetic (PK) profiles and they have a similar structure/SAR to inhibitors of human soluble epoxide hydrolase (sEH) enzymes. Therefore, in this study the further optimization of this compound class was driven by three factors: (1) to increase selectivity for anti-TB activity over human sEH activity, (2) to optimize PK profiles including solubility and (3) to maintain target inhibition. A new series of 1-adamantyl-3-heteroaryl ureas was designed and synthesized replacing the phenyl substituent of the original series with pyridines, pyrimidines, triazines, oxazoles, isoxazoles, oxadiazoles and pyrazoles. This study produced lead isoxazole, oxadiazole and pyrazole substituted adamantyl ureas with improved in vitro PK profiles, increased selectivity and good anti-TB potencies with sub µg/mL minimum inhibitory concentrations.


Asunto(s)
Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Mycobacteriaceae/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Urea/farmacología , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Epóxido Hidrolasas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Solubilidad , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/síntesis química , Células Vero
9.
J Biol Chem ; 286(26): 23168-77, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21555513

RESUMEN

The cell wall of mycobacteria consists of an outer membrane, analogous to that of gram-negative bacteria, attached to the peptidoglycan (PG) via a connecting polysaccharide arabinogalactan (AG). Although the primary structure of these components is fairly well deciphered, issues such as the coverage of the PG layer by covalently attached mycolates in the outer membrane and the spatial details of the mycolic acid attachment to the arabinan have remained unknown. It is also not understood how these components work together to lead to the classical acid-fast staining of mycobacteria. Because the majority of Mycobacterium tuberculosis bacteria in established experimental animal infections are acid-fast negative, clearly cell wall changes are occurring. To address both the spatial properties of mycobacterial cell walls and to begin to study the differences between bacteria grown in animals and cultures, the cell walls of Mycobacterium leprae grown in armadillos was characterized and compared with that of M. tuberculosis grown in culture. Most fundamentally, it was determined that the cell wall of M. leprae contained significantly more mycolic acids attached to PG than that of in vitro grown M. tuberculosis (mycolate:PG ratios of 21:10 versus 16:10, respectively). In keeping with this difference, more arabinogalactan (AG) molecules, linking the mycolic acids to PG, were found. Differences in the structures of the AG were also found; the AG of M. leprae is smaller than that of M. tuberculosis, although the same basic structural motifs are retained.


Asunto(s)
Pared Celular/metabolismo , Galactanos/metabolismo , Mycobacterium leprae/crecimiento & desarrollo , Mycobacterium tuberculosis/crecimiento & desarrollo , Ácidos Micólicos/metabolismo , Animales , Armadillos , Pared Celular/química , Galactanos/química , Mycobacterium leprae/química , Mycobacterium tuberculosis/química , Ácidos Micólicos/química , Especificidad de la Especie
10.
Bioorg Med Chem ; 20(20): 6063-72, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22995771

RESUMEN

A series of tetracyclic nitrofuran isoxazoline anti-tuberculosis agents was designed and synthesized to improve the pharmacokinetic properties of an initial lead compound, which had potent anti-tuberculosis activity but suffered from poor solubility, high protein binding and rapid metabolism. In this study, structural modifications were carried on the outer phenyl and piperidine rings to introduce solubilizing and metabolically blocking functional groups. The compounds generated were evaluated for their in vitro antitubercular activity, bacterial spectrum of activity, solubility, permeability, microsomal stability and protein binding. Pharmacokinetic profiles for the most promising candidates were then determined. Compounds with phenyl morpholine and pyridyl morpholine outer rings were found to be the most potent anti-tuberculosis agents in the series. These compounds retained a narrow antibacterial spectrum of activity, with weak anti-Gram positive and no Gram negative activity, as well as good activity against non-replicating Mycobacterium tuberculosis in a low oxygen model. Overall, the addition of solubilizing and metabolically blocked outer rings did improve solubility and decrease protein binding as designed. However, the metabolic stability for compounds in this series was generally lower than desired. The best three compounds selected for in vivo pharmacokinetic testing all showed high oral bioavailability, with one notable compound showing a significantly longer half-life and good tolerability supporting its further advancement.


Asunto(s)
Antituberculosos/química , Nitrofuranos/química , Animales , Antituberculosos/síntesis química , Antituberculosos/farmacocinética , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Semivida , Humanos , Isoxazoles/química , Ratones , Pruebas de Sensibilidad Microbiana , Microsomas/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Nitrofuranos/síntesis química , Nitrofuranos/farmacocinética , Ratas , Solubilidad , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 20(10): 3255-62, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22522007

RESUMEN

Adamantyl ureas were previously identified as a group of compounds active against Mycobacterium tuberculosis in culture with minimum inhibitor concentrations (MICs) below 0.1 µg/ml. These compounds have been shown to target MmpL3, a protein involved in secretion of trehalose mono-mycolate. They also inhibit both human soluble epoxide hydrolase (hsEH) and M. tuberculosis epoxide hydrolases. However, active compounds to date have high cLogP's and are poorly soluble, leading to low bioavailability and thus limiting any therapeutic application. In this study, a library of 1600 ureas (mostly adamantyl ureas), which were synthesized for the purpose of increasing the bioavailability of inhibitors of hsEH, was screened for activity against M. tuberculosis. 1-Adamantyl-3-phenyl ureas with a polar para substituent were found to retain moderate activity against M. tuberculosis and one of these compounds was shown to be present in serum after oral administration to mice. However, neither it, nor a closely related analog, reduced M. tuberculosis infection in mice. No correlation between in vitro potency against M. tuberculosis and the hsEH inhibition were found supporting the concept that activity against hsEH and M. tuberculosis can be separated. Also there was a lack of correlation with cLogP and inhibition of the growth of M. tuberculosis. Finally, members of two classes of adamantyl ureas that contained polar components to increase their bioavailability, but lacked efficacy against growing M. tuberculosis, were found to taken up by the bacterium as effectively as a highly active apolar urea suggesting that these modifications to increase bioavailability affected the interaction of the urea against its target rather than making them unable to enter the bacterium.


Asunto(s)
Adamantano/química , Antituberculosos/farmacología , Antituberculosos/farmacocinética , Evaluación Preclínica de Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Urea/farmacología , Urea/farmacocinética , Adamantano/farmacocinética , Adamantano/farmacología , Animales , Antituberculosos/química , Disponibilidad Biológica , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Urea/química
12.
Bioorg Med Chem ; 19(18): 5585-95, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21840723

RESUMEN

The treatment of tuberculosis is becoming more difficult due to the ever increasing prevalence of drug resistance. Thus, it is imperative that novel anti-tuberculosis agents, with unique mechanisms of action, be discovered and developed. The direct anti-tubercular testing of a small compound library led to discovery of adamantyl urea hit compound 1. In this study, the hit was followed up through the synthesis of an optimization library. This library was generated by systematically replacing each section of the molecule with a similar moiety until a clear structure-activity relationship was obtained with respect to anti-tubercular activity. The best compounds in this series contained a 1-adamantyl-3-phenyl urea core and had potent activity against Mycobacterium tuberculosis plus an acceptable therapeutic index. It was noted that the compounds identified and the pharmacophore developed is consistent with inhibitors of epoxide hydrolase family of enzymes. Consequently, the compounds were tested for inhibition of representative epoxide hydrolases: M. tuberculosis EphB and EphE; and human soluble epoxide hydrolase. Many of the optimized inhibitors showed both potent EphB and EphE inhibition suggesting the antitubercular activity is through inhibition of multiple epoxide hydrolase enzymes. The inhibitors also showed potent inhibition of humans soluble epoxide hydrolase, but limited cytotoxicity suggesting that future studies must be towards increasing the selectivity of epoxide hydrolase inhibition towards the M. tuberculosis enzymes.


Asunto(s)
Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Receptores de la Familia Eph/antagonistas & inhibidores , Urea/farmacología , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química , Células Vero
13.
Virology ; 558: 28-37, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33714753

RESUMEN

To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is critical for viral replication, integral to viral particle assembly, and a major diagnostic marker for infection and immune protection. Currently the limited available antibody reagents targeting the nucleocapsid protein are not specific to SARS-CoV-2 nucleocapsid protein, and sequences for these antibodies are not publicly available. In this work we developed and characterized a series of new mouse monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein, with a specific clone, mBG86, targeting only SARS-CoV-2 nucleocapsid protein. The monoclonal antibodies were validated in ELISA, Western blot, and immunofluorescence analyses. The variable regions from six select clones were cloned and sequenced, and preliminary epitope mapping of the sequenced clones was performed. Overall, these new antibody reagents will be of significant value in the fight against COVID-19.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , COVID-19/epidemiología , Clonación Molecular , Escherichia coli , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Fosfoproteínas/inmunología , Proteínas Recombinantes/inmunología
14.
Bioorg Med Chem ; 18(2): 896-908, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19969466

RESUMEN

High-throughput screening of 201,368 compounds revealed that 1-(3-(5-ethyl-5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)propyl)-1H-benzo[d]imidazol-2(3H)-one (SID 7975595) inhibited RmlC a TB cell wall biosynthetic enzyme. SID 7975595 acts as a competitive inhibitor of the enzyme's substrate and inhibits RmlC as a fast-on rate, fully reversible inhibitor. An analog of SID 7975595 had a K(i) of 62nM. Computer modeling showed that the binding of the tethered two-ringed system into the active site occurred at the thymidine binding region for one ring system and the sugar region for the other ring system.


Asunto(s)
Bencimidazoles/farmacología , Carbohidrato Epimerasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Indoles/farmacología , Mycobacterium tuberculosis/enzimología , Aorta/citología , Aorta/efectos de los fármacos , Bencimidazoles/síntesis química , Bencimidazoles/química , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Indoles/síntesis química , Indoles/química , Modelos Químicos , Relación Estructura-Actividad
15.
bioRxiv ; 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32908982

RESUMEN

The global COVID-19 pandemic has caused massive disruptions in every society around the world. To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is a major component of the viral replication processes, integral to viral particle assembly, and is a major diagnostic marker for infection and immune protection. Currently available antibody reagents targeting the nucleocapsid protein were primarily developed against the related SARS-CoV virus and are not specific to SARS-CoV-2 nucleocapsid protein. Therefore, in this work we developed and characterized a series of new mouse monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein. The anti-nucleocapsid monoclonal antibodies were tested in ELISA, western blot, and immunofluorescence analyses. The variable regions from the heavy and light chains from five select clones were cloned and sequenced, and preliminary epitope mapping of the sequenced clones was performed. Overall, the new antibody reagents described here will be of significant value in the fight against COVID-19.

16.
Bioorg Med Chem ; 17(10): 3588-94, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19386501

RESUMEN

Direct anti-tuberculosis screening of commercially available compound libraries identified a novel piperidinol with interesting anti-tuberculosis activity and drug like characteristics. To generate a structure activity relationship about this hit a 22 member optimization library was generated using parallel synthesis. Products of this library 1-((R)-3-(4-chlorophenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl)piperidin-4-ol and 1-((S)-3-(4-(trifluoromethyl) phenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl) piperidin-4-ol demonstrated good anti-tuberculosis activity. Unfortunately, side effects were observed upon in vivo anti-tuberculosis testing of these compounds precluding their further advancement, which may be in part due to the secondary pharmacology associated with the aryl piperidinol core.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/toxicidad , Piperidinas/síntesis química , Piperidinas/toxicidad , Animales , Antituberculosos/química , Chlorocebus aethiops , Descubrimiento de Drogas , Piperidinas/química , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Células Vero
17.
Int J Biochem Cell Biol ; 40(11): 2560-71, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18573680

RESUMEN

UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor of peptidoglycan and the rhamnose-GlcNAc linker region of mycobacterial cell wall. In Mycobacterium tuberculosis H37Rv genome, Rv1018c shows strong homology to the GlmU protein involved in the formation of UDP-GlcNAc from other bacteria. GlmU is a bifunctional enzyme that catalyzes two sequential steps in UDP-GlcNAc biosynthesis. Glucosamine-1-phosphate acetyl transferase catalyzes the formation of N-acetylglucosamine-1-phosphate, and N-acetylglucosamine-1-phosphate uridylyltransferase catalyzes the formation of UDP-GlcNAc. Since inhibition of peptidoglycan synthesis often results in cell lysis, M. tuberculosis GlmU is a potential anti-tuberculosis (TB) drug target. In this study we cloned M. tuberculosis Rv1018c (glmU gene) and expressed soluble GlmU protein in E. coli BL21(DE3). Enzymatic assays showed that M. tuberculosis GlmU protein exhibits both glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridylyltransferase activities. We also investigated the effect on Mycobacterium smegmatis when the activity of GlmU is fully removed or reduced via a genetic approach. The results showed that activity of GlmU is required for growth of M. smegmatis as the bacteria did not grow in the absence of active GlmU enzyme. As the amount of functional GlmU enzyme was gradually reduced in a temperature shift experiment, the M. smegmatis cells became non-viable and their morphology changed from a normal rod shape to stubby-rounded morphology and in some cases they lysed. Finally a microtiter plate based assay for GlmU activity with an OD340 read out was developed. These studies therefore support the further development of M. tuberculosis GlmU enzyme as a target for new anti-tuberculosis drugs.


Asunto(s)
Acetilglucosamina/metabolismo , Acetiltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Bioensayo/métodos , Complejos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimología , Nucleotidiltransferasas/metabolismo , Acetiltransferasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Estructura Molecular , Complejos Multienzimáticos/genética , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Nucleotidiltransferasas/genética , Organismos Modificados Genéticamente , Alineación de Secuencia
18.
J Antimicrob Chemother ; 62(5): 1037-45, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18693235

RESUMEN

OBJECTIVES: Nitrofuranylamides (NFAs) are nitroaromatic compounds that have recently been discovered and have potent anti-tuberculosis (TB) activity. A foundational study was performed to evaluate whether this class of agents possesses microbiological properties suitable for future antimycobacterial therapy. METHODS: Five representative compounds of the NFA series were evaluated by standard microbiological assays to determine MICs, MBCs, activity against anaerobic non-replicating persistent Mycobacterium tuberculosis, post-antibiotic effects (PAEs), antibiotic synergy and the basis for resistance. RESULTS: The antimicrobial activity of these compounds was restricted to bacteria of the M. tuberculosis complex, and all compounds were highly active against drug-susceptible and -resistant strains of M. tuberculosis, with MICs 0.0004-0.05 mg/L. Moreover, no antagonism was observed with front-line anti-TB drugs. Activity was also retained against dormant bacilli in two in vitro low-oxygen models for M. tuberculosis persistence. A long PAE was observed, which was comparable to that of rifampicin, but superior to isoniazid and ethambutol. Spontaneous NFA-resistant mutants arose at a frequency of 10(-5)-10(-7), comparable to that for isoniazid (10(-5)-10(-6)). Some of these mutants exhibited cross-resistance to one or both of the nitroimidazoles PA-824 and OPC-67683. Cross-resistance was associated with inactivation of the reduced F(420)-deazaflavin cofactor pathway and not with inactivation of the Rv3547, the nitroreductase for PA-824 and OPC-67683. CONCLUSIONS: Based on these studies, NFAs have many useful antimycobacterial properties applicable to TB chemotherapy and probably possess a unique mode of action that results in good activity against active and dormant M. tuberculosis. Therefore, the further development of lead compounds in this series is warranted.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium bovis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Nitrocompuestos/farmacología , Hidrocarburos Policíclicos Aromáticos/farmacología , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Estructura Molecular , Nitroimidazoles/farmacología , Oxazoles/farmacología
19.
Life Sci Alliance ; 1(3): e201800025, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30456352

RESUMEN

New antitubercular agents are needed to combat the spread of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis. The frontline antitubercular drug isoniazid (INH) targets the mycobacterial enoyl-ACP reductase, InhA. Resistance to INH is predominantly through mutations affecting the prodrug-activating enzyme KatG. Here, we report the identification of the diazaborines as a new class of direct InhA inhibitors. The lead compound, AN12855, exhibited in vitro bactericidal activity against replicating bacteria and was active against several drug-resistant clinical isolates. Biophysical and structural investigations revealed that AN12855 binds to and inhibits the substrate-binding site of InhA in a cofactor-independent manner. AN12855 showed good drug exposure after i.v. and oral delivery, with 53% oral bioavailability. Delivered orally, AN12855 exhibited dose-dependent efficacy in both an acute and chronic murine model of tuberculosis infection that was comparable with INH. Combined, AN12855 is a promising candidate for the development of new antitubercular agents.

20.
Bioorg Med Chem Lett ; 17(24): 6899-904, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17962016

RESUMEN

A 1000-member uridinyl branched peptide library was synthesized on PS-DES support using IRORI technology. High-throughput screening of this library for anti-tuberculosis activity identified several members with a MIC(90) value of 12.5 microg/mL.


Asunto(s)
Biblioteca de Péptidos , Uridina/química , Antituberculosos/química , Antituberculosos/farmacología , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA