Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(26): 2735-2748, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38518105

RESUMEN

ABSTRACT: Acute lymphoblastic leukemia (ALL) arises from the uncontrolled proliferation of B-cell precursors (BCP-ALL) or T cells (T-ALL). Current treatment protocols obtain high cure rates in children but are based on toxic polychemotherapy. Novel therapies are urgently needed, especially in relapsed/refractory (R/R) disease, high-risk (HR) leukemias and T-ALL, in which immunotherapy approaches remain scarce. Although the interleukin-7 receptor (IL-7R) plays a pivotal role in ALL development, no IL-7R-targeting immunotherapy has yet reached clinical application in ALL. The IL-7Rα chain (CD127)-targeting IgG4 antibody lusvertikimab (LUSV; formerly OSE-127) is a full antagonist of the IL-7R pathway, showing a good safety profile in healthy volunteers. Here, we show that ∼85% of ALL cases express surface CD127. We demonstrate significant in vivo efficacy of LUSV immunotherapy in a heterogeneous cohort of BCP- and T-ALL patient-derived xenografts (PDX) in minimal residual disease (MRD) and overt leukemia models, including R/R and HR leukemias. Importantly, LUSV was particularly effective when combined with polychemotherapy in a phase 2-like PDX study with CD127high samples leading to MRD-negativity in >50% of mice treated with combination therapy. Mechanistically, LUSV targeted ALL cells via a dual mode of action comprising direct IL-7R antagonistic activity and induction of macrophage-mediated antibody-dependent cellular phagocytosis (ADCP). LUSV-mediated in vitro ADCP levels significantly correlated with CD127 expression levels and the reduction of leukemia burden upon treatment of PDX animals in vivo. Altogether, through its dual mode of action and good safety profile, LUSV may represent a novel immunotherapy option for any CD127+ ALL, particularly in combination with standard-of-care polychemotherapy.


Asunto(s)
Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Ratones , Receptores de Interleucina-7/antagonistas & inhibidores , Ratones SCID , Fagocitosis/efectos de los fármacos , Subunidad alfa del Receptor de Interleucina-7 , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Femenino , Ratones Endogámicos NOD , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico
2.
Blood ; 140(1): 45-57, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452517

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common malignant disease affecting children. Although therapeutic strategies have improved, T-cell acute lymphoblastic leukemia (T-ALL) relapse is associated with chemoresistance and a poor prognosis. One strategy to overcome this obstacle is the application of monoclonal antibodies. Here, we show that leukemic cells from patients with T-ALL express surface CD38 and CD47, both attractive targets for antibody therapy. We therefore investigated the commercially available CD38 antibody daratumumab (Dara) in combination with a proprietary modified CD47 antibody (Hu5F9-IgG2σ) in vitro and in vivo. Compared with single treatments, this combination significantly increased in vitro antibody-dependent cellular phagocytosis in T-ALL cell lines as well as in random de novo and relapsed/refractory T-ALL patient-derived xenograft (PDX) samples. Similarly, enhanced antibody-dependent cellular phagocytosis was observed when combining Dara with pharmacologic inhibition of CD47 interactions using a glutaminyl cyclase inhibitor. Phase 2-like preclinical in vivo trials using T-ALL PDX samples in experimental minimal residual disease-like (MRD-like) and overt leukemia models revealed a high antileukemic efficacy of CD47 blockade alone. However, T-ALL xenograft mice subjected to chemotherapy first (postchemotherapy MRD) and subsequently cotreated with Dara and Hu5F9-IgG2σ displayed significantly reduced bone marrow infiltration compared with single treatments. In relapsed and highly refractory T-ALL PDX combined treatment with Dara and Hu5F9-IgG2σ was required to substantially prolong survival compared with single treatments. These findings suggest that combining CD47 blockade with Dara is a promising therapy for T-ALL, especially for relapsed/refractory disease harboring a dismal prognosis in patients.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antígeno CD47 , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico
3.
Cancer Metastasis Rev ; 39(1): 173-187, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31970588

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. One of the major clinical challenges is adequate diagnosis and treatment of central nervous system (CNS) involvement in this disease. Intriguingly, there is little solid evidence on the mechanisms sustaining CNS disease in ALL. Here, we present and discuss recent data on this topic, which are mainly derived from preclinical model systems. We thereby highlight sites and routes of leukemic CNS infiltration, cellular features promoting infiltration and survival of leukemic cells in a presumably hostile niche, and dormancy as a potential mechanism of survival and relapse in CNS leukemia. We also focus on the impact of ALL cytogenetic subtypes on features associated with a particular CNS tropism. Finally, we speculate on new perspectives in the treatment of ALL in the CNS, including ideas on the impact of novel immunotherapies.


Asunto(s)
Sistema Nervioso Central/patología , Infiltración Leucémica/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Niño , Humanos
4.
Cancer Sci ; 112(8): 3029-3040, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34058788

RESUMEN

Integrin associated protein (CD47) is an important target in immunotherapy, as it is expressed as a "don't eat me" signal on many tumor cells. Interference with its counter molecule signal regulatory protein alpha (SIRPα), expressed on myeloid cells, can be achieved with blocking Abs, but also by inhibiting the enzyme glutaminyl cyclase (QC) with small molecules. Glutaminyl cyclase inhibition reduces N-terminal pyro-glutamate formation of CD47 at the SIRPα binding site. Here, we investigated the impact of QC inhibition on myeloid effector cell-mediated tumor cell killing by epidermal growth factor receptor (EGFR) Abs and the influence of Ab isotypes. SEN177 is a QC inhibitor and did not interfere with EGFR Ab-mediated direct growth inhibition, complement-dependent cytotoxicity, or Ab-dependent cell-mediated cytotoxicity (ADCC) by mononuclear cells. However, binding of a human soluble SIRPα-Fc fusion protein to SEN177 treated cancer cells was significantly reduced in a dose-dependent manner, suggesting that pyro-glutamate formation of CD47 was affected. Glutaminyl cyclase inhibition in tumor cells translated into enhanced Ab-dependent cellular phagocytosis by macrophages and enhanced ADCC by polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophilic granulocyte-mediated ADCC was significantly more effective with EGFR Abs of human IgG2 or IgA2 isotypes than with IgG1 Abs, proposing that the selection of Ab isotypes could critically affect the efficacy of Ab therapy in the presence of QC inhibition. Importantly, QC inhibition also enhanced the therapeutic efficacy of EGFR Abs in vivo. Together, these results suggest a novel approach to specifically enhance myeloid effector cell-mediated efficacy of EGFR Abs by orally applicable small molecule QC inhibitors.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Antígenos de Diferenciación/química , Antineoplásicos Inmunológicos/administración & dosificación , Antígeno CD47/metabolismo , Neoplasias/tratamiento farmacológico , Receptores Inmunológicos/química , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Antígenos de Diferenciación/metabolismo , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cetuximab/administración & dosificación , Cetuximab/farmacología , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias/metabolismo , Panitumumab/administración & dosificación , Panitumumab/farmacología , Unión Proteica/efectos de los fármacos , Receptores Inmunológicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Blood ; 130(13): 1543-1552, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28698205

RESUMEN

Antibody therapy constitutes a major advance in the treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). To evaluate the efficacy and the mechanisms of action of CD19 monoclonal antibody therapy in pediatric BCP-ALL, we tested an Fc-engineered CD19 antibody carrying the S239D/I332E mutation for improved effector cell recruitment (CD19-DE). Patient-derived xenografts (PDX) of pediatric mixed-lineage leukemia gene (MLL)-rearranged ALL were established in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Antibody CD19-DE was efficient in prolonging the survival of NSG mice in a minimal residual disease (MRD) model. The majority of surviving mice remained polymerase chain reaction (PCR)-MRD negative after treatment. When antibody therapy was initiated in overt leukemia, antibody CD19-DE was still efficient in prolonging survival of xenografted mice in comparison with nontreated control animals, but the effects were less pronounced than in the MRD setting. Importantly, the combination of antibody CD19-DE and cytoreduction by chemotherapy (dexamethasone, vincristine, PEG-asparaginase) resulted in significantly improved survival rates in xenografted mice. Antibody CD19-DE treatment was also efficient in a randomized phase 2-like PDX trial using 13 MLL-rearranged BCP-ALL samples. Macrophage depletion by liposomal clodronate resulted in a reversal of the beneficial effects of CD19-DE, suggesting an important role for macrophages as effector cells. In support of this finding, CD19-DE was found to enhance phagocytosis of patient-derived ALL blasts by human macrophages in vitro. Thus, Fc-engineered CD19 antibodies may represent a promising treatment option for infants and children with MLL-rearranged BCP-ALL who have a poor outcome when treated with chemotherapy only.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adolescente , Animales , Anticuerpos/genética , Anticuerpos/uso terapéutico , Antígenos CD19/genética , Antígenos CD19/inmunología , Femenino , Xenoinjertos , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Lactante , Macrófagos/citología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Neoplasia Residual/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Células Tumorales Cultivadas
7.
Adv Exp Med Biol ; 1100: 127-139, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30411264

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Early response to therapy, especially the measurement of minimal residual disease (MRD), remains the most reliable and strongest independent prognostic parameter. Intriguingly, little is known on the mechanisms sustaining MRD in that disease. Here, we summarize existing evidence on the influences of molecular genetics and clonal architecture of childhood ALL on disease persistence. Also, the impact of the leukemic niche on residual leukemia cells in the bone marrow and extramedullary compartments is reviewed. We further discuss existing in vivo models of minimal residual disease based on different cellular labelling strategies and engraftment of ALL cells in immunodeficient mouse strains. We finally draw some conclusions on potential strategies targeting residual ALL cells, with a focus on cellular and antibody-based immunotherapy.


Asunto(s)
Neoplasia Residual/diagnóstico , Neoplasia Residual/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Médula Ósea/patología , Niño , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Pronóstico
8.
Blood ; 125(5): 820-30, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25428221

RESUMEN

Patients with t(1;19)-positive acute lymphoblastic leukemia (ALL) are prone to central nervous system (CNS) relapses, and expression of the TAM (Tyro3, Axl, and Mer) receptor Mer is upregulated in these leukemias. We examined the functional role of Mer in the CNS in preclinical models and performed correlative studies in 64 t(1;19)-positive and 93 control pediatric ALL patients. ALL cells were analyzed in coculture with human glioma cells and normal rat astrocytes: CNS coculture caused quiescence and protection from methotrexate toxicity in Mer(high) ALL cell lines, which was antagonized by short hairpin RNA-mediated knockdown of Mer. Mer expression was upregulated, prosurvival Akt and mitogen-activated protein kinase signaling were activated, and secretion of the Mer ligand Galectin-3 was stimulated. Mer(high) t(1;19) primary cells caused CNS involvement to a larger extent in murine xenografts than in their Mer(low) counterparts. Leukemic cells from Mer(high) xenografts showed enhanced survival in coculture. Treatment of Mer(high) patient cells with the Mer-specific inhibitor UNC-569 in vivo delayed leukemia onset, reduced CNS infiltration, and prolonged survival of mice. Finally, a correlation between high Mer expression and CNS positivity upon initial diagnosis was observed in t(1;19) patients. Our data provide evidence that Mer is associated with survival in the CNS in t(1;19)-positive ALL, suggesting a role as a diagnostic marker and therapeutic target.


Asunto(s)
Sistema Nervioso Central/metabolismo , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas/genética , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Antimetabolitos Antineoplásicos/farmacología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas Sanguíneas , Estudios de Casos y Controles , Supervivencia Celular , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Niño , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 19 , Técnicas de Cocultivo , Femenino , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Metotrexato/farmacología , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Translocación Genética , Células Tumorales Cultivadas , Tirosina Quinasa c-Mer
9.
Blood ; 125(22): 3420-31, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25896649

RESUMEN

Central nervous system acute lymphoblastic leukemia (CNS-ALL) is a major clinical problem. Prophylactic therapy is neurotoxic, and a third of the relapses involve the CNS. Increased expression of interleukin 15 (IL-15) in leukemic blasts is associated with increased risk for CNS-ALL. Using in vivo models for CNS leukemia caused by mouse T-ALL and human xenografts of ALL cells, we demonstrate that expression of IL-15 in leukemic cells is associated with the activation of natural killer (NK) cells. This activation limits the outgrowth of leukemic cells in the periphery, but less in the CNS because NK cells are excluded from the CNS. Depletion of NK cells in NOD/SCID mice enabled combined systemic and CNS leukemia of human pre-B-ALL. The killing of human leukemia lymphoblasts by NK cells depended on the expression of the NKG2D receptor. Analysis of bone marrow (BM) diagnostic samples derived from children with subsequent CNS-ALL revealed a significantly high expression of the NKG2D and NKp44 receptors. We suggest that the CNS may be an immunologic sanctuary protected from NK-cell activity. CNS prophylactic therapy may thus be needed with emerging NK cell-based therapies against hematopoietic malignancies.


Asunto(s)
Neoplasias del Sistema Nervioso Central/inmunología , Células Asesinas Naturales/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Animales , Animales Recién Nacidos , Células Cultivadas , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/patología , Humanos , Interleucina-15/metabolismo , Células Jurkat , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
10.
Haematologica ; 102(2): 346-355, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27686375

RESUMEN

Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central nervous system positivity in T-cell acute lymphoblastic leukemia (odds ratio=11.00, 95% confidence interval, 2.00-60.62). We propose zeta-chain-associated protein kinase 70, CCR7 and CXCR4 as markers of central nervous system infiltration in acute lymphoblastic leukemia warranting prospective investigation.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Infiltración Leucémica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteína Tirosina Quinasa ZAP-70/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regulación Leucémica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores CCR4/genética , Receptores CCR4/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Transducción de Señal , Proteína Tirosina Quinasa ZAP-70/genética
14.
BMC Cancer ; 15: 444, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-26025442

RESUMEN

BACKGROUND: The mechanisms allowing residual multiple myeloma (MM) cells to persist after bortezomib (Bz) treatment remain unclear. We hypothesized that studying the biology of bortezomib-surviving cells may reveal markers to identify these cells and survival signals to target and kill residual MM cells. METHODS: We used H2B-GFP label retention, biochemical tools and in vitro and in vivo experiments to characterize growth arrest and the unfolded protein responses in quiescent Bz-surviving cells. We also tested the effect of a demethylating agent, 5-Azacytidine, on Bz-induced quiescence and whether inhibiting the chaperone GRP78/BiP (henceforth GRP78) with a specific toxin induced apoptosis in Bz-surviving cells. Finally, we used MM patient samples to test whether GRP78 levels might associate with disease progression. Statistical analysis employed t-test and Mann-Whitney tests at a 95% confidence. RESULTS: We report that Bz-surviving MM cells in vitro and in vivo enter quiescence characterized by p21(CIP1) upregulation. Bz-surviving MM cells also downregulated CDK6, Ki67 and P-Rb. H2B-GFP label retention showed that Bz-surviving MM cells are either slow-cycling or deeply quiescent. The Bz-induced quiescence was stabilized by low dose (500nM) of 5-azacytidine (Aza) pre-treatment, which also potentiated the initial Bz-induced apoptosis. We also found that expression of GRP78, an unfolded protein response (UPR) survival factor, persisted in MM quiescent cells. Importantly, GRP78 downregulation using a specific SubAB bacterial toxin killed Bz-surviving MM cells. Finally, quantification of Grp78(high)/CD138+ MM cells from patients suggested that high levels correlated with progressive disease. CONCLUSIONS: We conclude that Bz-surviving MM cells display a GRP78(HIGH)/p21(HIGH)/CDK6(LOW)/P-Rb(LOW) profile, and these markers may identify quiescent MM cells capable of fueling recurrences. We further conclude that Aza + Bz treatment of MM may represent a novel strategy to delay recurrences by enhancing Bz-induced apoptosis and quiescence stability.


Asunto(s)
Bortezomib/administración & dosificación , Quinasa 6 Dependiente de la Ciclina/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Mieloma Múltiple/tratamiento farmacológico , Quinasas p21 Activadas/biosíntesis , Adulto , Anciano , Animales , Apoptosis/efectos de los fármacos , Azacitidina/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Quinasa 6 Dependiente de la Ciclina/genética , Chaperón BiP del Retículo Endoplásmico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas p21 Activadas/genética
15.
Hemasphere ; 8(2): e48, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435424

RESUMEN

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

16.
Blood Adv ; 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008716

RESUMEN

Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2D cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3D co-culture model combining human brain organoids and BCP-ALL-cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids as compared to non-ALL-cells. To validate translatability between organoid co-culture and in vivo murine models, we confirmed that targeting CNS leukemia relevant pathways like CD79a/Igα or CXCR4-SDF1 reduced the invasion of BCP-ALL-cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared to the non-invaded fraction revealed significant upregulation of AP-1 transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in ALL-PDX-cells recovered from the CNS compared to spleen blasts of mice transplanted with TCF3::PBX1+ PDX-cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1-gene JUN in patients initially diagnosed as CNS-positive compared to CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 BCP-ALL-patients. Our results suggest CNS-organoids as a novel model to investigate CNS-involvement and identify the AP-1 pathway as a critical driver of CNS-disease in BCP-ALL.

19.
Front Immunol ; 14: 1240275, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781391

RESUMEN

Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Macrófagos , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Inmunoglobulinas/metabolismo , Antígenos CD/metabolismo
20.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36898735

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for a number of hemato-oncological disorders. In fact, allo-HSCT is considered as one of the most successful immunotherapies as its clinical efficacy is based on the donor T-cells' capacity to control residual disease. This process is known as the graft-versus-leukemia (GvL) reaction. However, alloreactive T-cells can also recognize the host as foreign and trigger a systemic potentially life-threatening inflammatory disorder termed graft-versus-host disease (GvHD). A better understanding of the underlying mechanisms that lead to GvHD or disease relapse could help us to improve efficacy and safety of allo-HSCT. In recent years, extracellular vesicles (EVs) have emerged as critical components of intercellular crosstalk. Cancer-associated EVs that express the immune checkpoint molecule programmed death-ligand 1 (PD-L1) can suppress T-cell responses and thus contribute to immune escape. At the same time, it has been observed that inflammation triggers PD-L1 expression as part of a negative feedback network.Here, we investigated whether circulating EVs following allo-HSCT express PD-L1 and tested their efficacy to suppress the ability of (autologous) T-cells to effectively target AML blasts. Finally, we assessed the link between PD-L1 levels on EVs to (T-)cell reconstitution, GvHD, and disease relapse.We were able to detect PD-L1+ EVs that reached a peak PD-L1 expression at 6 weeks post allo-HSCT. Development of acute GvHD was linked to the emergence of PD-L1high EVs following allo-HSCT. Moreover, PD-L1 levels correlated positively with GvHD grade and declined (only) on successful therapeutic intervention. T-cell-inhibitory capacity was higher in PD-L1high EVs as compared with their PD-L1low counterparts and could be antagonized using PD-L1/PD-1 blocking antibodies. Abundance of T-cell-suppressive PD-L1high EVs appears to also impact GvL efficacy as patients were at higher risk for relapse. Finally, patients of PD-L1high cohort displayed a reduced overall survival.Taken together, we show that PD-L1-expressing EVs are present following allo-HSCT. PD-L1 levels on EVs correlate with their ability to suppress T-cells and the occurrence of GvHD. The latter observation may indicate a negative feedback mechanism to control inflammatory (GvHD) activity. This intrinsic immunosuppression could subsequently promote disease relapse.


Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Leucemia , Humanos , Linfocitos T , Antígeno B7-H1/metabolismo , Trasplante Homólogo/efectos adversos , Leucemia/etiología , Vesículas Extracelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA