Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chimia (Aarau) ; 75(3): 195-201, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33766202

RESUMEN

Artificial water splitting is a promising technology that allows the storage of renewable energy in the form of energy-rich compounds. This mini-review showcases how theoretical studies contribute to the under-standing of existing water oxidation catalysts (WOCs) as well as inspiring the development of novel WOCs. In order to understand the chemical complexity of transition metal complexes and their interaction with the solvent environment, the use of sophisticated simulation protocols is necessary. As an illustration, a family of ruthe- nium-based WOCs is presented which were investigated employing a wide range of forefront computational methods with emphasis on ab initiomolecular dynamic based approaches. In those studies a base assisted oxygen-oxygen bond formation was identified as the energetically most favourable reaction mechanism. By examining the role of local environmental effects at ambient temperature and the effect of modifications in the ligand framework, a comprehensible picture of the WOCs can be given, where the latter can serve as a guideline for further experimental and computational studies. In this mini-review, we provide a description of the methods, and the findings of our previous computational studies in compacted form, aimed at scientists with a theoretical as well as experimental background.

2.
J Am Chem Soc ; 141(22): 8846-8857, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31120246

RESUMEN

Predictive and mechanistically driven access to polynuclear oxo clusters and related materials remains a grand challenge of inorganic chemistry. We here introduce a novel strategy for synthetic control over highly sought-after transition metal {M4O4} cubanes. They attract interest as molecular water oxidation catalysts that combine features of both heterogeneous oxide catalysts and nature's cuboidal {CaMn4O5} center of photosystem II. For the first time, we demonstrate the outstanding structure-directing effect of straightforward inorganic counteranions in solution on the self-assembly of oxo clusters. We introduce a selective counteranion toolbox for the controlled assembly of di(2-pyridyl) ketone (dpk) with M(OAc)2 (M = Co, Ni) precursors into different cubane types. Perchlorate anions provide selective access to type 2 cubanes with the characteristic {H2O-M2(OR)2-OH2} edge-site, such as [Co4(dpy-C{OH}O)4(OAc)2(H2O)2](ClO4)2. Type 1 cubanes with separated polar faces [Co4(dpy-C{OH}O)4(L2)4] n+ (L2 = OAc, Cl, or OAc and H2O) can be tuned with a wide range of other counteranions. The combination of these counteranion sets with Ni(OAc)2 as precursor selectively produces type 2 Co/Ni-mixed or {Ni4O4} cubanes. Systematic mechanistic experiments in combination with computational studies provide strong evidence for type 2 cubane formation through reaction of the key dimeric building block [M2(dpy-C{OH}O)2(H2O)4]2+ with monomers, such as [Co(dpy-C{OH}O)(OAc)(H2O)3]. Furthermore, both experiments and DFT calculations support an energetically favorable type 1 cubane formation pathway via direct head-to-head combination of two [Co2(dpy-C{OH}O)2(OAc)2(H2O)2] dimers. Finally, the visible-light-driven water oxidation activity of type 1 and 2 cubanes with tuned ligand environments was assessed. We pave the way to efficient design concepts in coordination chemistry through ionic control over cluster assembly pathways. Our comprehensive strategy demonstrates how retrosynthetic analyses can be implemented with readily available assembly directing counteranions to provide rapid access to tuned molecular materials.

3.
J Am Chem Soc ; 139(40): 14198-14208, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28953394

RESUMEN

The future of artificial photosynthesis depends on economic and robust water oxidation catalysts (WOCs). Cobalt-based WOCs are especially promising for knowledge transfer between homogeneous and heterogeneous catalyst design. We introduce the active and stable {CoII4O4} cubane [CoII4(dpy{OH}O)4(OAc)2(H2O)2](ClO4)2 (Co4O4-dpk) as the first molecular WOC with the characteristic {H2O-Co2(OR)2-OH2} edge-site motif representing the sine qua non moiety of the most efficient heterogeneous Co-oxide WOCs. DFT-MD modelings as well as in situ EXAFS measurements indicate the stability of the cubane cage in solution. The stability of Co4O4-dpk under photocatalytic conditions ([Ru(bpy)3]2+/S2O82-) was underscored with a wide range of further analytical methods and recycling tests. FT-IR monitoring and HR-ESI-MS spectra point to a stable coordination of the acetate ligands, and DFT-MD simulations along with 1H/2H exchange experiments highlight a favorable intramolecular base functionality of the dpy{OH}O ligands. All three ligand types enhance proton mobility at the edge site through a unique bioinspired environment with multiple hydrogen-bonding interactions. In situ XANES experiments under photocatalytic conditions show that the {CoII4O4} core undergoes oxidation to Co(III) or higher valent states, which recover rather slowly to Co(II). Complementary ex situ chemical oxidation experiments with [Ru(bpy)3]3+ furthermore indicate that the oxidation of all Co(II) centers of Co4O4-dpk to Co(III) is not a mandatory prerequisite for oxygen evolution. Moreover, we present the [CoIIxNi4-x(dpy{OH}O)4(OAc)2(H2O)2](ClO4)2 (CoxNi4-xO4-dpk) series as the first mixed Co/Ni-cubane WOCs. They newly bridge homogeneous and heterogeneous catalyst design through fine-tuned edge-site environments of the Co centers.

4.
Org Lett ; 23(7): 2426-2430, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33703907

RESUMEN

The nucleophilic addition of silyl-enol ethers to nitrogen in 3-monosubstituted s-tetrazines mediated by BF3 is reported. The preference for this azaphilic addition over the usually observed inverse electron demand Diels-Alder reactions was evaluated theoretically and corroborated by experiments. The substrate dependency of this unusual reaction was rationalized by determination of the activation barriers and on the basis of the activation strain model by employing density functional theory.

5.
J Chem Theory Comput ; 16(4): 2436-2449, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32207933

RESUMEN

Mastering artificial water oxidation is a key step on moving away from fossil fuels toward a carbon emission-free society. Unfortunately, the crucial chemical transformation of this reaction, the O-O bond formation, is still not well understood, even though there are various known active water oxidation catalysts, such as Ru-based catalysts bearing a Py5 ligand. Those were recently investigated both experimentally and using a static density functional theory (DFT) approach based on geometry optimizations. In this work, we shed light on the O-O formation catalyzed by those Ru-based complexes, utilizing enhanced sampling techniques such as the Bluemoon ensemble and metadynamics together with high-performance DFT-based molecular dynamics simulations. This allowed unprecedented detailed insights into the process of the oxygen-oxygen bond formation and also extended the view on the reaction network and the flexibility of the product state because of the consideration of the dynamics at ambient conditions. Our model system contained both the catalyst and a large number of explicit water molecules which can participate in the reaction and stabilize intermediates. Moreover, it is demonstrated how crucial the choice of the collective variable is in order to capture relevant features of the studied reaction.

6.
ChemSusChem ; 13(10): 2745-2752, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32108445

RESUMEN

Cobalt complexes containing equatorial tetraazamacrocyclic ligands are active catalysts for the hydrogen evolution reaction in pure aqueous conditions. We investigated the effect of different groups directly linked to the macrocyclic ligand (-NH-, -NCH3 -, or -N(CH2 OH)-). In electrochemically induced hydrogen evolution catalysis at pH 4, the rate determining step is the protonation of the reduced CoI species that gives a cobalt hydride (CoIII -H), a key intermediate towards the H-H bond formation. In sharp contrast, under photochemical conditions using [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) as a photosensitizer and ascorbate as sacrificial electron donor, the formation of a Co0 species that quickly protonates to give a CoII -H is proposed. In this scenario, the rate determining step is the H-H bond formation that occurs in an intermolecular fashion from the CoII -H species and a water molecule. Both mechanisms are supported by DFT calculations, which allowed us to estimate the pKa values of the CoIII -H and CoII -H species and transition states based on intramolecular and intermolecular H-H bond formation from CoII -H.

7.
Front Chem ; 6: 100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721491

RESUMEN

A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

8.
Dalton Trans ; 47(31): 10480-10490, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29780997

RESUMEN

In order to rationally design water oxidation catalysts (WOCs), an in-depth understanding of the reaction mechanism is essential. In this study we showcase the complexity of catalytic water oxidation, by elucidating how modifications of the pentapyridyl (Py5) ligand-framework influence the thermodynamics and kinetics of the process. In the reaction mechanism the pyridine-water exchange was identified as a key reaction which appears to determine the reactivity of the Py5-WOCs. Exploring the capabilities of in silico design we show which modifications of the ligand framework appear promising when attempting to improve the catalytic performance of WOCs derived from Py5.

9.
ChemSusChem ; 10(22): 4561-4569, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-28941193

RESUMEN

Bio-mimetic catalysts such as LnCo3 (OR)4 (Ln=Er, Tm; OR=alkoxide) cubanes have recently been in the focus of research for artificial water oxidation processes. Previously, the remarkable adaptability with respect to ligand shell, nuclear structure as well as protonation and oxidation states of those catalysts has been shown to be beneficial for the water oxidation process. We further explored the structural flexibility of those catalysts and present here a series of novel structures in which one metal center is pulled out of the cubane cage. This leads to an open cubane core, which is to some extent reminiscent of observed open/closed cubane-core forms of the oxygen-evolving complex in nature's photosystem II. We investigate how those open cubane core models alter the thermodynamics of the water oxidation cycle and how different solvation approaches influence their stability.


Asunto(s)
Materiales Biomiméticos/química , Lantano , Compuestos Organometálicos/química , Agua/química , Carbono , Catálisis , Ligandos , Oxidación-Reducción , Complejo de Proteína del Fotosistema II , Termodinámica
10.
ChemSusChem ; 10(22): 4517-4525, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29068156

RESUMEN

Ruthenium complexes containing the pentapyridyl ligand 6,6''-(methoxy(pyridin-2-yl)methylene)di-2,2'-bipyridine (L-OMe) of general formula trans-[RuII (X)(L-OMe-κ-N5 )]n+ (X=Cl, n=1, trans-1+ ; X=H2 O, n=2, trans-22+ ) have been isolated and characterized in solution (by NMR and UV/Vis spectroscopy) and in the solid state by XRD. Both complexes undergo a series of substitution reactions at oxidation state RuII and RuIII when dissolved in aqueous triflic acid-trifluoroethanol solutions as monitored by UV/Vis spectroscopy, and the corresponding rate constants were determined. In particular, aqueous solutions of the RuIII -Cl complex trans-[RuIII (Cl)(L-OMe-κ-N5 )]2+ (trans-12+ ) generates a family of Ru aquo complexes, namely trans-[RuIII (H2 O)(L-OMe-κ-N5 )]3+ (trans-23+ ), [RuIII (H2 O)2 (L-OMe-κ-N4 )]3+ (trans-33+ ), and [RuIII (Cl)(H2 O)(L-OMe-κ-N4 )]2+ (trans-42+ ). Although complex trans-42+ is a powerful water oxidation catalyst, complex trans-23+ has only a moderate activity and trans-33+ shows no activity. A parallel study with related complexes containing the methyl-substituted ligand 6,6''-(1-pyridin-2-yl)ethane-1,1-diyl)di-2,2'-bipyridine (L-Me) was carried out. The behavior of all of these catalysts has been rationalized based on substitution kinetics, oxygen evolution kinetics, electrochemical properties, and density functional theory calculations. The best catalyst, trans-42+ , reaches turnover frequencies of 0.71 s-1 using CeIV as a sacrificial oxidant, with oxidative efficiencies above 95 %.

11.
Dalton Trans ; 45(48): 19361-19367, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27878157

RESUMEN

Two ruthenium complexes containing the tetradentate ligand [1,1'-biisoquinoline]-3,3'-dicarboxylic acid, and 4-picoline or 6-bromoisoquinoline as axial ligands have been prepared. The complexes have been fully characterised and initial studies on their potential to function as molecular water oxidation catalysts have been performed. Both complexes catalyse the oxidation of water in acidic media with CeIV as a stoichiometric chemical oxidant, although turnover numbers and turnover frequencies are modest when compared with the closely related Ru-bda and Ru-pda analogues. Barriers for the water nucleophilic attack and intermolecular coupling pathways were obtained from density functional theory calculations and the crucial influence of the ligand framework in determining the most favourable reaction pathway was elucidated from a combined analysis of the theoretical and experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA