Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 75(5): 996-1006.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31377116

RESUMEN

Cotranslational processing of newly synthesized proteins is fundamental for correct protein maturation. Protein biogenesis factors are thought to bind nascent polypeptides not before they exit the ribosomal tunnel. Here, we identify a nascent chain recognition mechanism deep inside the ribosomal tunnel by an essential eukaryotic cytosolic chaperone. The nascent polypeptide-associated complex (NAC) inserts the N-terminal tail of its ß subunit (N-ßNAC) into the ribosomal tunnel to sense substrates directly upon synthesis close to the peptidyl-transferase center. N-ßNAC escorts the growing polypeptide to the cytosol and relocates to an alternate binding site on the ribosomal surface. Using C. elegans as an in vivo model, we demonstrate that the tunnel-probing activity of NAC is essential for organismal viability and critical to regulate endoplasmic reticulum (ER) protein transport by controlling ribosome-Sec61 translocon interactions. Thus, eukaryotic protein maturation relies on the early sampling of nascent chains inside the ribosomal tunnel.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Canales de Translocación SEC/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/genética , Humanos , Ribosomas/genética , Canales de Translocación SEC/genética , Saccharomyces cerevisiae
2.
Mol Cell ; 74(4): 729-741.e7, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30982745

RESUMEN

The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aß40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the ßNAC subunit (N-ßNAC) as a major chaperone entity of NAC. N-ßNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.


Asunto(s)
Péptidos beta-Amiloides/genética , Chaperonas Moleculares/genética , Agregación Patológica de Proteínas/genética , Péptidos beta-Amiloides/química , Sitios de Unión/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Luciferasas/química , Luciferasas/genética , Chaperonas Moleculares/química , Péptidos/química , Péptidos/genética , Unión Proteica/genética , Biosíntesis de Proteínas/genética , Dominios Proteicos/genética , Pliegue de Proteína , Ribosomas/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
3.
Antibiotics (Basel) ; 5(2)2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27240412

RESUMEN

Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA