Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649238

RESUMEN

Critical periods (CPs) are time windows of heightened brain plasticity during which experience refines synaptic connections to achieve mature functionality. At glutamatergic synapses on dendritic spines of principal cortical neurons, the maturation is largely governed by postsynaptic density protein-95 (PSD-95)-dependent synaptic incorporation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors into nascent AMPA-receptor silent synapses. Consequently, in mouse primary visual cortex (V1), impaired silent synapse maturation in PSD-95-deficient neurons prevents the closure of the CP for juvenile ocular dominance plasticity (jODP). A structural hallmark of jODP is increased spine elimination, induced by brief monocular deprivation (MD). However, it is unknown whether impaired silent synapse maturation facilitates spine elimination and also preserves juvenile structural plasticity. Using two-photon microscopy, we assessed spine dynamics in apical dendrites of layer 2/3 pyramidal neurons (PNs) in binocular V1 during ODP in awake adult mice. Under basal conditions, spine formation and elimination ratios were similar between PSD-95 knockout (KO) and wild-type (WT) mice. However, a brief MD affected spine dynamics only in KO mice, where MD doubled spine elimination, primarily affecting newly formed spines, and caused a net reduction in spine density similar to what has been observed during jODP in WT mice. A similar increase in spine elimination after MD occurred if PSD-95 was knocked down in single PNs of layer 2/3. Thus, structural plasticity is dictated cell autonomously by PSD-95 in vivo in awake mice. Loss of PSD-95 preserves hallmark features of spine dynamics in jODP into adulthood, revealing a functional link of PSD-95 for experience-dependent synapse maturation and stabilization during CPs.


Asunto(s)
Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large/deficiencia , Plasticidad Neuronal , Células Piramidales/metabolismo , Sinapsis/metabolismo , Corteza Visual/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Ratones , Ratones Noqueados
2.
J Neurosci ; 42(34): 6581-6592, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35840324

RESUMEN

The nucleus accumbens shell (NAcSh) is a key brain region where environmental cues acquire incentive salience to reinforce motivated behaviors. Principal medium spiny neurons (MSNs) in the NAcSh receive extensive glutamatergic projections from limbic regions, among which, the ventral hippocampus (vH) transmits information enriched in contextual cues, and the basolateral amygdala (BLA) encodes real-time arousing states. The vH and BLA project convergently to NAcSh MSNs, both activated in a time-locked manner on a cue-conditioned motivational action. In brain slices prepared from male and female mice, we show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAcSh synapses without affecting BLA-to-NAcSh synapses, revealing a heterosynaptic mechanism through which BLA signals persistently increase the temporally contingent vH-to-NAcSh transmission. Furthermore, this LTP is more prominent in dopamine D1 receptor-expressing (D1) MSNs than D2 MSNs and can be prevented by inhibition of either D1 receptors or dopaminergic terminals in NAcSh. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.SIGNIFICANCE STATEMENT In motivated behaviors, environmental cues associated with arousing stimuli acquire increased incentive salience, processes mediated in part by the nucleus accumbens (NAc). NAc principal neurons receive glutamatergic projections from the ventral hippocampus (vH) and basolateral amygdala (BLA), which transmit information encoding contextual cues and affective states, respectively. Our results show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAc synapses without affecting BLA-to-NAc synapses, revealing a heterosynaptic mechanism through which BLA signals potentiate the temporally contingent vH-to-NAc transmission. Furthermore, this LTP is prevented by inhibition of either D1 receptors or dopaminergic axons. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.


Asunto(s)
Dopamina , Potenciación a Largo Plazo , Amígdala del Cerebelo , Animales , Femenino , Hipocampo/fisiología , Masculino , Ratones , Núcleo Accumbens/fisiología , Sinapsis/fisiología
3.
Eur J Neurosci ; 57(8): 1215-1224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36876503

RESUMEN

Brain derived neurotrophic factor (BDNF) and its receptor tropomyosin kinase receptor B (TRKB) are key regulators of activity-dependent plasticity in the brain. TRKB is the target for both slow- and rapid-acting antidepressants and BDNF-TRKB system mediates the plasticity-inducing effects of antidepressants through their downstream targets. Particularly, the protein complexes that regulate the trafficking and synapse recruitment of TRKB receptors might be crucial in this process. In the present study, we investigated the interaction of TRKB with the postsynaptic density protein 95 (PSD95). We found that antidepressants increase the TRKB:PSD95 interaction in adult mouse hippocampus. Fluoxetine, a slow-acting antidepressant, increases this interaction only after a long-term (7 days) treatment, while (2R,6R)-hydroxynorketamine (RHNK), an active metabolite of rapid-acting antidepressant ketamine, achieves this within a short treatment regimen (3 days). Moreover, the drug-induced changes of TRKB:PSD95 interaction correlate with drug latency in behaviour, observed in mice subjected to an object location memory test (OLM). While silencing of PSD95 by viral delivery of shRNA in hippocampus abolished the RHNK-induced plasticity in mice in OLM, overexpression of PSD95 shortened the fluoxetine latency. In summary, changes in the TRKB:PSD95 interaction contribute to differences observed in drug latency. This study sheds a light on a novel mechanism of action of different classes of antidepressants.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Fluoxetina , Animales , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Receptor trkB/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
4.
Mol Psychiatry ; 27(6): 2868-2878, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35296806

RESUMEN

Frequent relapse prevents the successful treatment of substance use disorders and is triggered in part by retrieval of drug-associated memories. Drug-conditioned behaviours in rodents are reinstated upon drug memory retrieval following re-exposure to cues previously associated with the drug, or the drug itself. Therapies based on mechanistic insights from rodent studies have focused on amnesic procedures of cue-drug associations but with so far limited success. Conversely, more recent studies propose that inhibiting drug memory retrieval offers improved anti-relapse efficacy. However, mechanisms of memory retrieval are poorly understood. Here, we used a conditioned place preference (CPP) procedure in mice to investigate the cellular and molecular underpinnings of drug-induced memory retrieval. After extinction training of CPP, Ca2+-permeable AMPA receptors (CP-AMPARs) accumulated at drug-generated silent synapses of nucleus accumbens (NAc) medium spiny neurons. The NAc CP-AMPARs regulated the retrieval mechanism of drug memories after extinction. Specifically, we used different priming doses of cocaine, fentanyl, or a cue associated with drug exposure to reinstate CPP, providing different memory retrieval conditions. Although both high and low doses of these two drugs induced CPP reinstatement, compromising CP-AMPAR accumulation impaired CPP reinstatement, induced by low doses of each drug or the cue. This threshold effect was mediated by NAc CP-AMPARs as region specific knock-down of PSD-95 prevented low-dose cocaine-induced retrieval selectively. These results demonstrate the NAc as a brain region and CP-AMPARs as key synaptic substrates that govern the threshold for drug-induced retrieval and behavioural expression of drug memories.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/metabolismo , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Ratones , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo
5.
J Neurosci ; 41(9): 1996-2011, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33436529

RESUMEN

Cocaine experience generates AMPA receptor (AMPAR)-silent synapses in the nucleus accumbens (NAc), which are thought to be new synaptic contacts enriched in GluN2B-containing NMDA receptors (NMDARs). After drug withdrawal, some of these synapses mature by recruiting AMPARs, strengthening the newly established synaptic transmission. Silent synapse generation and maturation are two consecutive cellular steps through which NAc circuits are profoundly remodeled to promote cue-induced cocaine seeking after drug withdrawal. However, the basic cellular processes that mediate these two critical steps remains underexplored. Using a combination of electrophysiology, viral-mediated gene transfer, and confocal imaging in male rats as well as knock-in (KI) mice of both sexes, our current study characterized the dynamic roles played by AMPARs and NMDARs in generation and maturation of silent synapses on NAc medium spiny neurons after cocaine self-administration and withdrawal. We report that cocaine-induced generation of silent synapses not only required synaptic insertion of GluN2B-containing NMDARs, but also, counterintuitively, involved insertion of AMPARs, which subsequently internalized, resulting in the AMPAR-silent state on withdrawal day 1. Furthermore, GluN2B NMDARs functioned to maintain these cocaine-generated synapses in the AMPAR-silent state during drug withdrawal, until they were replaced by nonGluN2B NMDARs, a switch that allowed AMPAR recruitment and maturation of silent synapses. These results reveal dynamic interactions between AMPARs and NMDARs during the generation and maturation of silent synapses after cocaine experience and provide a mechanistic basis through which new synaptic contacts and possibly new neural network patterns created by these synapses can be manipulated for therapeutic benefit.SIGNIFICANCE STATEMENT Studies over the past decade reveal a critical role of AMPA receptor-silent, NMDA receptor-containing synapses in forming cocaine-related memories that drive cocaine relapse. However, it remains incompletely understood how AMPA and NMDA receptors traffic at these synapses during their generation and maturation. The current study characterizes a two-step AMPA receptor trafficking cascade that contributes to the generation of silent synapses in response to cocaine experience, and a two-step NMDA receptor trafficking cascade that contributes to the maturation of these synapses after cocaine withdrawal. These results depict a highly regulated cellular procedure through which nascent glutamatergic synapses are generated in the adult brain after drug experience and provide significant insight into the roles of glutamate receptors in synapse formation and maturation.


Asunto(s)
Cocaína/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Animales , Trastornos Relacionados con Cocaína/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Femenino , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Transporte de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
6.
Molecules ; 27(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35956955

RESUMEN

Alternative methods were evaluated for chitin isolation from Acheta domesticus. Chemical demineralization was compared to fermentation with Lactococcus lactis, citric acid treatment, and microwave treatment, leading to a degree of demineralization of 91.1 ± 0.3, 97.3 ± 0.8, 70.5 ± 3.5, and 85.8 ± 1.3%, respectively. Fermentation with Bacillus subtilis, a deep eutectic solvent, and enzymatic digestion were tested for chitin isolation, generating materials with less than half the chitin content when compared to alkaline deproteinization. Chitosan was produced on a large scale by deacetylation of the chitinous material obtained from two selected processes: the chemical treatment and an alternative process combining L. lactis fermentation with bromelain deproteinization. The chemical and alternative processes resulted in similar chitosan content (81.9 and 88.0%), antioxidant activity (59 and 49%), and degree of deacetylation (66.6 and 62.9%), respectively. The chitosan products had comparable physical properties. Therefore, the alternative process is appropriate to replace the chemical process of chitin isolation for industrial applications.


Asunto(s)
Quitosano , Gryllidae , Animales , Fenómenos Químicos , Quitina/química , Quitosano/química , Fermentación , Gryllidae/metabolismo
7.
J Neurosci ; 40(37): 7119-7132, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32763909

RESUMEN

The nucleus accumbens shell (NAcSh) regulates emotional and motivational responses, a function mediated, in part, by integrating and prioritizing extensive glutamatergic projections from limbic and paralimbic brain regions. Each of these inputs is thought to encode unique aspects of emotional and motivational arousal. The projections do not operate alone, but rather are often activated simultaneously during motivated behaviors, during which they can interact and coordinate in shaping behavioral output. To understand the anatomic and physiological bases underlying these interprojection interactions, the current study in mice of both sexes focused on how the basolateral amygdala projection (BLAp) to the NAcSh regulates, and is regulated by, projections from the medial prefrontal cortex (mPFCp) and paraventricular nucleus of the thalamus (PVTp). Using a dual-color SynaptoTag technique combined with a backfilling spine imaging strategy, we found that all three afferent projections primarily targeted the secondary dendrites of NAcSh medium spiny neurons, forming putative synapses. We detected a low percentage of BLAp contacts closely adjacent to mPFCp or PVTp presumed synapses, and, on some rare occasions, the BLAp formed heterosynaptic interactions with mPFCp or PVTp profiles or appeared to contact the same spines. Using dual-rhodopsin optogenetics, we detected signs of dendritic summation of BLAp with PVTp and mPFCp inputs. Furthermore, high-frequency activation of BLAp synchronous with the PVTp or mPFCp resulted in a transient enhancement of the PVTp, but not mPFCp, transmission. These results provide anatomic and functional indices that the BLAp interacts with the mPFCp and PVTp for informational processing within the NAcSh.SIGNIFICANCE STATEMENT The nucleus accumbens regulates emotional and motivational responses by integrating extensive glutamatergic projections, but the anatomic and physiological bases on which these projections integrate and interact remain underexplored. Here, we used dual-color synaptic markers combined with backfilling of nucleus accumbens medium spiny neurons to reveal some unique anatomic alignments of presumed synapses from the basolateral amygdala, medial prefrontal cortex, and paraventricular nucleus of thalamus. We also used dual-rhodopsin optogenetics in brain slices, which reveal a nonlinear interaction between some, but not all, projections. These results provide compelling anatomic and physiological mechanisms through which different glutamatergic projections to the nucleus accumbens, and possibly different aspects of emotional and motivational arousal, interact with each other for final behavioral output.


Asunto(s)
Amígdala del Cerebelo/fisiología , Núcleo Accumbens/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Corteza Prefrontal/fisiología , Sinapsis/fisiología , Amígdala del Cerebelo/citología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Núcleo Accumbens/citología , Núcleo Hipotalámico Paraventricular/citología , Corteza Prefrontal/citología , Transmisión Sináptica
8.
EMBO J ; 36(4): 458-474, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077487

RESUMEN

Exposure to cocaine generates silent synapses in the nucleus accumbens (NAc), whose eventual unsilencing/maturation by recruitment of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) after drug withdrawal results in profound remodeling of NAc neuro-circuits. Silent synapse-based NAc remodeling was shown to be critical for several drug-induced behaviors, but its role in acquisition and retention of the association between drug rewarding effects and drug-associated contexts has remained unclear. Here, we find that the postsynaptic proteins PSD-93, PSD-95, and SAP102 differentially regulate excitatory synapse properties in the NAc. Mice deficient for either of these scaffold proteins exhibit distinct maturation patterns of silent synapses and thus provided instructive animal models to examine the role of NAc silent synapse maturation in cocaine-conditioned place preference (CPP). Wild-type and knockout mice alike all acquired cocaine-CPP and exhibited increased levels of silent synapses after drug-context conditioning. However, the mice differed in CPP retention and CP-AMPAR incorporation. Collectively, our results indicate that CP-AMPAR-mediated maturation of silent synapses in the NAc is a signature of drug-context association, but this maturation is not required for establishing or retaining cocaine-CPP.


Asunto(s)
Calcio/metabolismo , Cocaína/metabolismo , Núcleo Accumbens/fisiología , Receptores AMPA/metabolismo , Síndrome de Abstinencia a Sustancias , Sinapsis/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Receptores de Glutamato/metabolismo
9.
PLoS Biol ; 16(12): e2006838, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586380

RESUMEN

The disc-large (DLG)-membrane-associated guanylate kinase (MAGUK) family of proteins forms a central signaling hub of the glutamate receptor complex. Among this family, some proteins regulate developmental maturation of glutamatergic synapses, a process vulnerable to aberrations, which may lead to neurodevelopmental disorders. As is typical for paralogs, the DLG-MAGUK proteins postsynaptic density (PSD)-95 and PSD-93 share similar functional domains and were previously thought to regulate glutamatergic synapses similarly. Here, we show that they play opposing roles in glutamatergic synapse maturation. Specifically, PSD-95 promoted, whereas PSD-93 inhibited maturation of immature α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor (AMPAR)-silent synapses in mouse cortex during development. Furthermore, through experience-dependent regulation of its protein levels, PSD-93 directly inhibited PSD-95's promoting effect on silent synapse maturation in the visual cortex. The concerted function of these two paralogs governed the critical period of juvenile ocular dominance plasticity (jODP), and fine-tuned visual perception during development. In contrast to the silent synapse-based mechanism of adjusting visual perception, visual acuity improved by different mechanisms. Thus, by controlling the pace of silent synapse maturation, the opposing but properly balanced actions of PSD-93 and PSD-95 are essential for fine-tuning cortical networks for receptive field integration during developmental critical periods, and imply aberrations in either direction of this process as potential causes for neurodevelopmental disorders.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/fisiología , Guanilato-Quinasas/fisiología , Proteínas de la Membrana/fisiología , Sinapsis/metabolismo , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores , Femenino , Ácido Glutámico/metabolismo , Guanilato-Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Transmisión Sináptica/fisiología , Corteza Visual/metabolismo
10.
Compr Rev Food Sci Food Saf ; 20(4): 3225-3266, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34056857

RESUMEN

The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.


Asunto(s)
Manipulación de Alimentos , Inocuidad de los Alimentos , Bacterias , Humanos , Presión Hidrostática , Tecnología
11.
Proc Natl Acad Sci U S A ; 114(41): E8750-E8759, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973852

RESUMEN

The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking.


Asunto(s)
Potenciales de Acción/fisiología , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Inhibición Neural , Neuronas/fisiología , Núcleo Accumbens/fisiología , Vasoconstrictores/administración & dosificación , Animales , Complejo Nuclear Basolateral , Femenino , Técnicas de Sustitución del Gen , Depresión Sináptica a Largo Plazo , Masculino , Ratones Endogámicos C57BL , Neuronas/citología , Receptor Cannabinoide CB1/fisiología , Autoadministración
12.
J Neurosci ; 38(18): 4316-4328, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29626166

RESUMEN

In human drug users, cue-induced drug craving progressively intensifies after drug abstinence, promoting drug relapse. This time-dependent progression of drug craving is recapitulated in rodent models, in which rats exhibit progressive intensification of cue-induced drug seeking after withdrawal from drug self-administration, a phenomenon termed incubation of drug craving. Although recent results suggest that functional alterations of the nucleus accumbens (NAc) contribute to incubation of drug craving, it remains poorly understood how NAc function evolves after drug withdrawal to progressively intensify drug seeking. The functional output of NAc relies on how the membrane excitability of its principal medium spiny neurons (MSNs) translates excitatory synaptic inputs into action potential firing. Here, we report a synapse-membrane homeostatic crosstalk (SMHC) in male rats, through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the intrinsic membrane excitability of NAc MSNs, and vice versa. After short-term withdrawal from cocaine self-administration, despite no actual change in the AMPA receptor-mediated excitatory synaptic strength, GluN2B NMDA receptors, the SMHC sensors of synaptic strength, are upregulated. This may create false SMHC signals, leading to a decrease in the membrane excitability of NAc MSNs. The decreased membrane excitability subsequently induces another round of SMHC, leading to synaptic accumulation of calcium-permeable AMPA receptors and upregulation of excitatory synaptic strength after long-term withdrawal from cocaine. Disrupting SMHC-based dysregulation cascades after cocaine exposure prevents incubation of cocaine craving. Thus, cocaine triggers cascades of SMHC-based dysregulation in NAc MSNs, promoting incubated cocaine seeking after drug withdrawal.SIGNIFICANCE STATEMENT Here, we report a bidirectional homeostatic plasticity between the excitatory synaptic input and membrane excitability of nucleus accumbens (NAc) medium spiny neurons (MSNs), through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the membrane excitability, and vice versa. Cocaine self-administration creates a false homeostatic signal that engages this synapse-membrane homeostatic crosstalk mechanism, and produces cascades of alterations in excitatory synapses and membrane properties of NAc MSNs after withdrawal from cocaine. Experimentally preventing this homeostatic dysregulation cascade prevents the progressive intensification of cocaine seeking after drug withdrawal. These results provide a novel mechanism through which drug-induced homeostatic dysregulation cascades progressively alter the functional output of NAc MSNs and promote drug relapse.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Ansia , Homeostasis , Potenciales de Acción , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Trastornos Relacionados con Cocaína/psicología , Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Potenciales Postsinápticos Excitadores , Quinasas del Centro Germinal , Masculino , Plasticidad Neuronal , Neuronas , Núcleo Accumbens/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Síndrome de Abstinencia a Sustancias/psicología , Sinapsis
13.
Proc Natl Acad Sci U S A ; 113(18): 5089-94, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27091967

RESUMEN

Environmental enrichment (EE) has long been postulated as a behavioral treatment for drug addiction based on its preventive effects in animal models: rodents experiencing prior EE exhibit increased resistance to establishing drug taking and seeking. However, the therapeutic effects of EE, namely, the effects of EE when applied after drug exposure, are often marginal and transient. Using incubation of cue-induced cocaine craving, a rat relapse model depicting progressive intensification of cocaine seeking after withdrawal from cocaine self-administration, our present study reveals that after cocaine withdrawal, in vivo circuit-specific long-term depression (LTD) unmasks the therapeutic power of EE to achieve long-lasting anti-relapse effects. Specifically, our previous results show that cocaine self-administration generates AMPA receptor (AMPAR)-silent excitatory synapses within the basolateral amygdala (BLA) to nucleus accumbens (NAc) projection, and maturation of these silent synapses via recruiting calcium-permeable (CP) AMPARs contributes to incubation of cocaine craving. Here, we show that after cocaine withdrawal and maturation of silent synapses, the BLA-to-NAc projection became highly resistant to EE. However, optogenetic LTD applied to this projection in vivo transiently re-silenced these silent synapses by removing CP-AMPARs. During this transient window, application of EE resulted in the insertion of nonCP-AMPARs, thereby remodeling the "incubated" BLA-to-NAc projection. Consequently, incubation of cocaine craving was decreased persistently. These results reveal a mechanistic basis through which the persistent anti-relapse effects of EE can be unleashed after drug withdrawal.


Asunto(s)
Terapia Conductista/métodos , Trastornos Relacionados con Cocaína/etiología , Trastornos Relacionados con Cocaína/terapia , Núcleo Accumbens/fisiopatología , Síndrome de Abstinencia a Sustancias/fisiopatología , Sinapsis , Amígdala del Cerebelo/fisiopatología , Animales , Cocaína/efectos adversos , Masculino , Inhibición Neural , Vías Nerviosas/fisiopatología , Ratas , Ratas Sprague-Dawley , Recurrencia , Resultado del Tratamiento
14.
Proc Natl Acad Sci U S A ; 112(24): E3131-40, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26015564

RESUMEN

During critical periods, all cortical neural circuits are refined to optimize their functional properties. The prevailing notion is that the balance between excitation and inhibition determines the onset and closure of critical periods. In contrast, we show that maturation of silent glutamatergic synapses onto principal neurons was sufficient to govern the duration of the critical period for ocular dominance plasticity in the visual cortex of mice. Specifically, postsynaptic density protein-95 (PSD-95) was absolutely required for experience-dependent maturation of silent synapses, and its absence before the onset of critical periods resulted in lifelong juvenile ocular dominance plasticity. Loss of PSD-95 in the visual cortex after the closure of the critical period reinstated silent synapses, resulting in reopening of juvenile-like ocular dominance plasticity. Additionally, silent synapse-based ocular dominance plasticity was largely independent of the inhibitory tone, whose developmental maturation was independent of PSD-95. Moreover, glutamatergic synaptic transmission onto parvalbumin-positive interneurons was unaltered in PSD-95 KO mice. These findings reveal not only that PSD-95-dependent silent synapse maturation in visual cortical principal neurons terminates the critical period for ocular dominance plasticity but also indicate that, in general, once silent synapses are consolidated in any neural circuit, initial experience-dependent functional optimization and critical periods end.


Asunto(s)
Guanilato-Quinasas/fisiología , Proteínas de la Membrana/fisiología , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/fisiología , Sinapsis/fisiología , Corteza Visual/crecimiento & desarrollo , Corteza Visual/fisiología , Animales , Mapeo Encefálico , Homólogo 4 de la Proteína Discs Large , Predominio Ocular/fisiología , Femenino , Glutamina/fisiología , Guanilato-Quinasas/deficiencia , Guanilato-Quinasas/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Receptores AMPA/fisiología
15.
Proc Natl Acad Sci U S A ; 111(3): 1150-5, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395770

RESUMEN

Ocular dominance (OD) plasticity in mouse primary visual cortex (V1) declines during postnatal development and is absent beyond postnatal day 110 if mice are raised in standard cages (SCs). An enriched environment (EE) promotes OD plasticity in adult rats. Here, we explored cellular mechanisms of EE in mouse V1 and the therapeutic potential of EE to prevent impairments of plasticity after a cortical stroke. Using in vivo optical imaging, we observed that monocular deprivation in adult EE mice (i) caused a very strong OD plasticity previously only observed in 4-wk-old animals, (ii) restored already lost OD plasticity in adult SC-raised mice, and (iii) preserved OD plasticity after a stroke in the primary somatosensory cortex. Using patch-clamp electrophysiology in vitro, we also show that (iv) local inhibition was significantly reduced in V1 slices of adult EE mice and (v) the GABA/AMPA ratio was like that in 4-wk-old SC-raised animals. These observations were corroborated by in vivo analyses showing that diazepam treatment significantly reduced the OD shift of EE mice after monocular deprivation. Taken together, EE extended the sensitive phase for OD plasticity into late adulthood, rejuvenated V1 after 4 mo of SC-rearing, and protected adult mice from stroke-induced impairments of cortical plasticity. The EE effect was mediated most likely by preserving low juvenile levels of inhibition into adulthood, which potentially promoted adaptive changes in cortical circuits.


Asunto(s)
Predominio Ocular , Plasticidad Neuronal/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Diazepam/química , Ambiente , Femenino , Moduladores del GABA/química , Ibuprofeno/química , Interneuronas/metabolismo , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Perfusión , Trombosis/patología , Factores de Tiempo , Visión Ocular , Corteza Visual/fisiología
16.
Proc Natl Acad Sci U S A ; 110(2): 713-8, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23267100

RESUMEN

The nucleus accumbens (NAc) regulates motivated behavior by, in part, processing excitatory synaptic projections from several brain regions. Among these regions, the prefrontal cortex (PFC) and basolateral amygdala, convey executive control and affective states, respectively. Whereas glutamatergic synaptic transmission within the NAc has been recognized as a primary cellular target for cocaine and other drugs of abuse to induce addiction-related pathophysiological motivational states, the understanding has been thus far limited to drug-induced postsynaptic alterations. It remains elusive whether exposure to cocaine or other drugs of abuse influences presynaptic functions of these excitatory projections, and if so, in which projection pathways. Using optogenetic methods combined with biophysical assays, we demonstrate that the presynaptic release probability (Pr) of the PFC-to-NAc synapses was enhanced after short-term withdrawal (1 d) and long-term (45 d) withdrawal from either noncontingent (i.p. injection) or contingent (self-administration) exposure to cocaine. After long-term withdrawal of contingent drug exposure, the Pr was higher compared with i.p. injected rats. In contrast, within the basolateral amygdala afferents, presynaptic Pr was not significantly altered in any of these experimental conditions. Thus, cocaine-induced procedure- and pathway-specific presynaptic enhancement of excitatory synaptic transmission in the NAc. These results, together with previous findings of cocaine-induced postsynaptic enhancement, suggest an increased PFC-to-NAc shell glutamatergic synaptic transmission after withdrawal from exposure to cocaine. This presynaptic alteration may interact with other cocaine-induced cellular adaptations to shift the functional output of NAc neurons, contributing to the addictive emotional and motivational state.


Asunto(s)
Cocaína/farmacología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Receptores Presinapticos/metabolismo , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Cocaína/administración & dosificación , Inyecciones Intraperitoneales , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores Presinapticos/efectos de los fármacos , Autoadministración , Transmisión Sináptica/efectos de los fármacos
17.
Food Microbiol ; 46: 184-194, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475283

RESUMEN

Enterohemorrhagic Escherichia coli strains cause each year thousands of illnesses, which are sometimes accompanied by the hemolytic uremic syndrome, like in the 2011 outbreak in Germany. For preservation thermal pasteurization is commonly used, which can cause unwanted quality changes. To prevent this high pressure treatment is a potential alternative. Within this study, the 2011 outbreak strain O104:H4, an O157:H7 and a non-pathogenic strain (DSM1116) were tested. The cells were treated in buffer (pH 7 and pH 5) and carrot juice (pH 5.1) in a pressure temperature range of 0.1-500 MPa and 20-70 °C. Flow cytometry was used to investigate the pressure impact on cell structures of the strain DSM1116. Both pathogenic strains had a much higher resistance in buffer and carrot juice than the non-pathogenic surrogate. Further, strains cultivated and treated at a lower pH-value showed higher pressure stability, presumably due to variations in the membrane composition. This was confirmed for the strain DSM1116 by flow cytometry. Cells cultivated and treated at pH 5 had a stronger ability to retain their membrane potential but showed higher rates of membrane permeabilization at pressures <200 MPa compared to cells cultivated and treated at pH 7. These cells had the lowest membrane permeabilization rate at around 125 MPa, possibly denoting that variations in the fatty acid composition and membrane fluidity contribute to this stabilization phenomenon.


Asunto(s)
Bebidas/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Bebidas/análisis , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Escherichia coli O157/química , Escherichia coli O157/crecimiento & desarrollo , Alemania/epidemiología , Humanos , Concentración de Iones de Hidrógeno , Viabilidad Microbiana , Presión , Escherichia coli Shiga-Toxigénica/química
18.
Proc Natl Acad Sci U S A ; 109(40): E2717-25, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-23012412

RESUMEN

Endocannabinoid signaling critically regulates emotional and motivational states via activation of cannabinoid receptor 1 (CB1) in the brain. The nucleus accumbens (NAc) functions to gate emotional and motivational responses. Although expression of CB1 in the NAc is low, manipulation of CB1 signaling within the NAc triggers robust emotional/motivational alterations related to drug addiction and other psychiatric disorders, and these effects cannot be exclusively attributed to CB1 located at afferents to the NAc. Rather, CB1-expressing neurons in the NAc, although sparse, appear to be critical for emotional and motivational responses. However, the cellular properties of these neurons remain largely unknown. Here, we generated a knock-in mouse line in which CB1-expressing neurons expressed the fluorescent protein td-Tomato (tdT). Using these mice, we demonstrated that tdT-positive neurons within the NAc were exclusively fast-spiking interneurons (FSIs). These FSIs were electrically coupled with each other, and thus may help synchronize populations/ensembles of NAc neurons. CB1-expressing FSIs also form GABAergic synapses on adjacent medium spiny neurons (MSNs), providing feed-forward inhibition of NAc output. Furthermore, the membrane excitability of tdT-positive FSIs in the NAc was up-regulated after withdrawal from cocaine exposure, an effect that might increase FSI-to-MSN inhibition. Taken together with our previous findings that the membrane excitability of NAc MSNs is decreased during cocaine withdrawal, the present findings suggest that the basal functional output of the NAc is inhibited during cocaine withdrawal by multiple mechanisms. As such, CB1-expressing FSIs are targeted by cocaine exposure to influence the overall functional output of the NAc.


Asunto(s)
Cocaína , Interneuronas/metabolismo , Núcleo Accumbens/citología , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/fisiología , Síndrome de Abstinencia a Sustancias/fisiopatología , Análisis de Varianza , Animales , Cartilla de ADN/genética , Técnicas de Sustitución del Gen , Inmunohistoquímica , Masculino , Ratones , Núcleo Accumbens/metabolismo , Técnicas de Placa-Clamp , Receptor Cannabinoide CB1/genética , Síndrome de Abstinencia a Sustancias/metabolismo
19.
J Neurosci ; 33(33): 13398-409, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946397

RESUMEN

Activity-dependent regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is the basis for establishing differences in synaptic weights among individual synapses during developmental and experience-dependent synaptic plasticity. Synaptic signaling scaffolds of the Discs large (DLG)-membrane-associated guanylate kinase (MAGUK) protein family regulate these processes by tethering signaling proteins to receptor complexes. Using a molecular replacement strategy with RNAi-mediated knockdown in rat and mouse hippocampal organotypic slice cultures, a postsynaptic density-95 (PSD-95) knock-out mouse line and electrophysiological analysis, our current study identified a functional interplay between two paralogs, PSD-95 and synapse-associated protein 102 (SAP102) to regulate synaptic AMPARs. During synaptic development, the SAP102 protein levels normally plateau but double if PSD-95 expression is prevented during synaptogenesis. For an autonomous function of PSD-95 in regulating synaptic AMPARs, in addition to the previously demonstrated N-terminal multimerization and the first two PDZ (PSD-95, Dlg1, zona occludens-1) domains, the PDZ3 and guanylate kinase domains were required. The Src homology 3 domain was dispensable for the PSD-95-autonomous regulation of basal synaptic transmission. However, it mediated the functional interaction with SAP102 of PSD-95 mutants to enhance AMPARs. These results depict a protein domain-based multifunctional aspect of PSD-95 in regulating excitatory synaptic transmission and unveil a novel form of domain-based interplay between signaling scaffolds of the DLG-MAGUK family.


Asunto(s)
Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Western Blotting , Homólogo 4 de la Proteína Discs Large , Femenino , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Neuropéptidos/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
20.
J Neurosci ; 33(16): 6753-8, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595733

RESUMEN

Medium spiny neurons (MSNs) within the nucleus accumbens shell (NAc) function to gate and prioritize emotional/motivational arousals for behavioral output. The neuronal output of NAc MSNs is mainly determined by the integration of membrane excitability and excitatory/inhibitory synaptic inputs. Whereas cocaine-induced alterations at excitatory synapses and membrane excitability have been extensively examined, the overall functional output of NAc MSNs following cocaine exposure is still poorly defined because little is known about whether inhibitory synaptic input to these neurons is affected by cocaine. Here, our results demonstrate multidimensional alterations at inhibitory synapses in NAc neurons following cocaine self-administration in rats. Specifically, the amplitude of miniature IPSCs (mIPSCs) was decreased after 21 d withdrawal from 5 d cocaine self-administration. Upon re-exposure to cocaine after 21 d withdrawal, whereas the amplitude of mIPSCs remained downregulated, the frequency became significantly higher. Furthermore, the reversal potential of IPSCs, which was not significantly altered during withdrawal, became more hyperpolarized upon cocaine re-exposure. Moreover, the relative weight of excitatory and inhibitory inputs to NAc MSNs was significantly decreased after 1 d cocaine withdrawal, increased after 21 d withdrawal, and returned to the basal level upon cocaine re-exposure after 21 d withdrawal. These results, together with previous results showing cocaine-induced adaptations at excitatory synapses and intrinsic membrane excitability of NAc MSNs, may provide a relatively thorough picture of the functional state of NAc MSNs following cocaine exposure.


Asunto(s)
Anestésicos Locales/administración & dosificación , Cocaína/administración & dosificación , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Neuronas/efectos de los fármacos , Núcleo Accumbens/citología , Sinapsis/efectos de los fármacos , Animales , Condicionamiento Operante , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Masculino , Núcleo Accumbens/efectos de los fármacos , Técnicas de Placa-Clamp , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Autoadministración , Tetrodotoxina/farmacología , Factores de Tiempo , Valina/análogos & derivados , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA