Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 629(8011): 355-362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720042

RESUMEN

The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.

2.
Nature ; 615(7954): 836-840, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949188

RESUMEN

Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H2 evolution or CO2 fixation1,2. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems3. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems4,5. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Factores de Tiempo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Cianobacterias/metabolismo , Electrones , Termodinámica
3.
Nature ; 594(7864): 522-528, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34163058

RESUMEN

The key to advancing lithium-ion battery technology-in particular, fast charging-is the ability to follow and understand the dynamic processes occurring in functioning materials under realistic conditions, in real time and on the nano- to mesoscale. Imaging of lithium-ion dynamics during battery operation (operando imaging) at present requires sophisticated synchrotron X-ray1-7 or electron microscopy8,9 techniques, which do not lend themselves to high-throughput material screening. This limits rapid and rational materials improvements. Here we introduce a simple laboratory-based, optical interferometric scattering microscope10-13 to resolve nanoscopic lithium-ion dynamics in battery materials, and apply it to follow cycling of individual particles of the archetypal cathode material14,15, LixCoO2, within an electrode matrix. We visualize the insulator-to-metal, solid solution and lithium ordering phase transitions directly and determine rates of lithium diffusion at the single-particle level, identifying different mechanisms on charge and discharge. Finally, we capture the dynamic formation of domain boundaries between different crystal orientations associated with the monoclinic lattice distortion at the Li0.5CoO2 composition16. The high-throughput nature of our methodology allows many particles to be sampled across the entire electrode and in future will enable exploration of the role of dislocations, morphologies and cycling rate on battery degradation. The generality of our imaging concept means that it can be applied to study any battery electrode, and more broadly, systems where the transport of ions is associated with electronic or structural changes. Such systems include nanoionic films, ionic conducting polymers, photocatalytic materials and memristors.

4.
Nat Mater ; 22(9): 1121-1127, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37414944

RESUMEN

Simultaneous transport and coupling of ionic and electronic charges is fundamental to electrochemical devices used in energy storage and conversion, neuromorphic computing and bioelectronics. While the mixed conductors enabling these technologies are widely used, the dynamic relationship between ionic and electronic transport is generally poorly understood, hindering the rational design of new materials. In semiconducting electrodes, electrochemical doping is assumed to be limited by motion of ions due to their large mass compared to electrons and/or holes. Here, we show that this basic assumption does not hold for conjugated polymer electrodes. Using operando optical microscopy, we reveal that electrochemical doping speeds in a state-of-the-art polythiophene can be limited by poor hole transport at low doping levels, leading to substantially slower switching speeds than expected. We show that the timescale of hole-limited doping can be controlled by the degree of microstructural heterogeneity, enabling the design of conjugated polymers with improved electrochemical performance.

5.
Nat Mater ; 21(11): 1306-1313, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35970962

RESUMEN

To rationalize and improve the performance of newly developed high-rate battery electrode materials, it is crucial to understand the ion intercalation and degradation mechanisms occurring during realistic battery operation. Here we apply a laboratory-based operando optical scattering microscopy method to study micrometre-sized rod-like particles of the anode material Nb14W3O44 during high-rate cycling. We directly visualize elongation of the particles, which, by comparison with ensemble X-ray diffraction, allows us to determine changes in the state of charge of individual particles. A continuous change in scattering intensity with state of charge enables the observation of non-equilibrium kinetic phase separations within individual particles. Phase field modelling (informed by pulsed-field-gradient nuclear magnetic resonance and electrochemical experiments) supports the kinetic origin of this separation, which arises from the state-of-charge dependence of the Li-ion diffusion coefficient. The non-equilibrium phase separations lead to particle cracking at high rates of delithiation, particularly in longer particles, with some of the resulting fragments becoming electrically disconnected on subsequent cycling. These results demonstrate the power of optical scattering microscopy to track rapid non-equilibrium processes that would be inaccessible with established characterization techniques.

6.
J Chem Phys ; 158(3): 034201, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681638

RESUMEN

Charge modulation microscopy (CMM) is an electro-optical method that is capable of mapping the spatial distribution of induced charges in an organic field-effect transistor (OFET). Here, we report a new (and simple) implementation of CMM in transmission geometry with camera-based imaging. A significant improvement in data acquisition speed (by at least an order of magnitude) has been achieved while preserving the spatial and spectral resolution. To demonstrate the capability of the system, we measured the spatial distribution of the induced charges in an OFET with a polymer blend of indacenodithiophene-co-benzothiadiazole and poly-vinylcarbazole that shows micrometer-scale phase separation. We were able to resolve spatial variations in the accumulated charge density on a length scale of 500 nm. We demonstrated through a careful spectral analysis that the measured signal is a genuine charge accumulation signal that is not dominated by optical artifacts.


Asunto(s)
Microscopía , Polímeros
7.
Inorg Chem ; 61(31): 12308-12317, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35892197

RESUMEN

The monoanionic tetrapyrrolic macrocycle B,C-tetradehydrocorrin (TDC) resides chemically between corroles and corrins. This chemical space remains largely unexplored due to a lack of reliable synthetic strategies. We now report the preparation and characterization of Co(II)- and Ni(II)-metalated TDC derivatives ([Co-TDC]+ and [Ni-TDC]+, respectively) with a combination of crystallographic, electrochemical, computational, and spectroscopic techniques. [Ni-TDC]+ was found to undergo primarily ligand-centered electrochemical reduction, leading to hydrogenation of the macrocycle under cathodic electrolysis in the presence of acid. Transient absorption (TA) spectroscopy reveals that [Ni-TDC]+ and the two-electron-reduced [Ni-TDC]- possess long-lived excited states, whereas the excited state of singly reduced [Ni-TDC] exhibits picosecond dynamics. The Co(I) compound [Co-TDC] is air stable, highlighting the notable property of the TDC ligand to stabilize low-valent metal centers in contradistinction to other tetrapyrroles such as corroles, which typically stabilize metals in higher oxidation states.

8.
Proc Natl Acad Sci U S A ; 115(23): E5261-E5268, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784802

RESUMEN

Electrodeposited manganese oxide films are promising catalysts for promoting the oxygen evolution reaction (OER), especially in acidic solutions. The activity of these catalysts is known to be enhanced by the introduction of Mn3+ We present in situ electrochemical and X-ray absorption spectroscopic studies, which reveal that Mn3+ may be introduced into MnO2 by an electrochemically induced comproportionation reaction with Mn2+ and that Mn3+ persists in OER active films. Extended X-ray absorption fine structure (EXAFS) spectra of the Mn3+-activated films indicate a decrease in the Mn-O coordination number, and Raman microspectroscopy reveals the presence of distorted Mn-O environments. Computational studies show that Mn3+ is kinetically trapped in tetrahedral sites and in a fully oxidized structure, consistent with the reduction of coordination number observed in EXAFS. Although in a reduced state, computation shows that Mn3+ states are stabilized relative to those of oxygen and that the highest occupied molecular orbital (HOMO) is thus dominated by oxygen states. Furthermore, the Mn3+(Td) induces local strain on the oxide sublattice as observed in Raman spectra and results in a reduced gap between the HOMO and the lowest unoccupied molecular orbital (LUMO). The confluence of a reduced HOMO-LUMO gap and oxygen-based HOMO results in the facilitation of OER on the application of anodic potentials to the δ-MnO2 polymorph incorporating Mn3+ ions.

9.
J Phys Chem A ; 124(13): 2721-2730, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32130861

RESUMEN

We present a statistical analysis of femtosecond transient absorption microscopy applied to four different organic semiconductor thin films based on perylene-diimide (PDI). By achieving a temporal resolution of 12 fs with simultaneous sub-10 nm spatial precision, we directly probe the underlying exciton transport characteristics within 3 ps after photoexcitation free of model assumptions. Our study reveals sub-picosecond coherent exciton transport (12-45 cm2 s-1) followed by a diffusive phase of exciton transport (3-17 cm2 s-1). A comparison between the different films suggests that the exciton transport in the studied materials is intricately linked to their nanoscale morphology, with PDI films that form large crystalline domains exhibiting the largest diffusion coefficients and transport lengths. Our study demonstrates the advantages of directly studying ultrafast transport properties at the nanometer length scale and highlights the need to examine nanoscale morphology when investigating exciton transport in organic as well as inorganic semiconductors.

10.
J Am Chem Soc ; 141(1): 89-93, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30563318

RESUMEN

A reaction cycle for redox-mediated, Ni-catalyzed aryl etherification is proposed under both photoredox and electrochemically mediated conditions. We demonstrate that a self-sustained Ni(I/III) cycle is operative in both cases by chemically synthesizing and characterizing a common paramagnetic Ni intermediate and establishing its catalytic activity. Furthermore, deleterious pathways leading to off-cycle Ni(II) species have been identified, allowing us to discover optimized conditions for achieving self-sustained reactivity at a ∼15-fold increase in the quantum yield and a ∼3-fold increase in the faradaic yield. These results highlight the importance of leveraging insight of complete reaction cycles for increasing the efficiency of redox-mediated reactions.

11.
J Am Chem Soc ; 140(44): 14926-14937, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30372046

RESUMEN

The quantum efficiency in photoredox catalysis is the crucial determinant of energy intensity and, thus, is intrinsically tied to the sustainability of the overall process. Here, we track the formation of different transient species of a catalytic photoredox hydroamidation reaction initiated by the reaction of an Ir(III) photoexcited complex with 2-cyclohexen-1-yl(4-bromophenyl)carbamate. We find that the back reaction between the amidyl radical and Ir(II) photoproducts generated from the quenching reaction leads to a low quantum efficiency of the system. Using transient absorption spectroscopy, all of the rate constants for productive and nonproductive pathways of the catalytic cycle have been determined, enabling us to establish a kinetically competent equilibrium involving the crucial amidyl radical intermediate that minimizes its back reaction with the Ir(II) photoproduct. This strategy of using an off-pathway equilibrium allows us to improve the overall quantum efficiency of the reaction by a factor of 4. Our results highlight the benefits from targeting the back-electron transfer reactions of photoredox catalytic cycles to lead to improved energy efficiency and accordingly improved sustainability and cost benefits of photoredox synthetic methods.

12.
J Am Chem Soc ; 138(14): 4757-62, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26999496

RESUMEN

Channelrhodopsins are light-gated ion channels with extensive applications in optogenetics. Channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) exhibits a red-shifted absorption spectrum as compared to Channelrhodopsin-2, which is highly beneficial for optogenetic application. The primary event in the photocycle of CaChR1 involves an isomerization of the protein-bound retinal chromophore. Here, we apply highly time-resolved vibronic spectroscopy to reveal the electronic and structural dynamics associated with the first step of the photocycle of CaChR1. We observe vibrationally coherent formation of the P1 intermediate exhibiting a twisted 13-cis retinal with a 110 ± 7 fs time constant. Comparison with low-temperature resonance Raman spectroscopy of the corresponding trapped photoproduct demonstrates that this rapidly formed P1 intermediate is stable for several hundreds of nanoseconds.


Asunto(s)
Retinaldehído/química , Rodopsina/química , Chlamydomonas/química , Isomerismo , Procesos Fotoquímicos , Proteínas de Plantas/química , Espectrometría Raman
13.
J Am Chem Soc ; 137(8): 2886-91, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25647020

RESUMEN

Conical intersections play a crucial role in photochemical processes, but limited experimental information exists on the structural distortions that couple electronic with reactive nuclear motion. Using ultra-broadband and highly time-resolved optical spectroscopy, we follow the evolution of vibrational wavepackets after passage through a conical intersection during the primary visual event, the 11-cis to all-trans photoisomerization of the retinal chromophore in rhodopsin. Comparison of nuclear coherences generated under resonant and off-resonant impulsive excitation conclusively reveals coherent wavepacket motion in the bathorhodopsin photoproduct over the full vibrational manifold. We observe strongly enhanced coherences in low-frequency torsional degrees of freedom over the fingerprint region and almost complete suppression of some hydrogen wagging motion. Our ability to monitor the multidimensional evolution of nuclear wavepackets across multiple electronic states is a general means for studying the structural and dynamic origins of efficient photochemistry and provides critical experimental information for theoretical studies.

14.
J Am Chem Soc ; 137(39): 12434-7, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26376448

RESUMEN

A hallmark of the primary visual event is the barrierless, ultrafast, and efficient 11-cis to all-trans photoisomerization of the retinal protonated Schiff base (RPSB) chromophore. The remarkable reactivity of RPSB in the visual pigment rhodopsin has been attributed to potential energy surface modifications enabled by evolution-optimized chromophore-protein interactions. Here, we use a combined synthetic and ultrafast spectroscopic approach to show that barrierless photoisomerization is an intrinsic property of 11-cis RPSB, suggesting that the protein may merely adjust the ratio between fast reactive and slow unreactive decay channels. These results call for a re-evaluation of our understanding and theoretical description of RPSB photochemistry.


Asunto(s)
Fotoquímica , Retinaldehído/química , Retinaldehído/metabolismo , Bases de Schiff/química , Isomerismo , Estructura Molecular , Soluciones
15.
Nat Mater ; 18(4): 307-308, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30894754
16.
J Am Chem Soc ; 136(6): 2650-8, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24479840

RESUMEN

Understanding how molecular structure and environment control energy flow in molecules is a requirement for the efficient design of tailor-made photochemistry. Here, we investigate the tunability of the photochemical and photophysical properties of the retinal-protonated Schiff base chromophore in solution. Replacing the n-butylamine Schiff base normally chosen to mimic the saturated linkage found in nature by aromatic amines results in the reproduction of the opsin shift and complete suppression of all isomerization channels. Modification of retinal by directed addition or removal of backbone substituents tunes the overall photoisomerization yield from 0 to 0.55 and the excited state lifetime from 0.4 to 7 ps and activates previously inaccessible reaction channels to form 7-cis and 13-cis products. We observed a clear correlation between the presence of polarizable backbone substituents and photochemical reactivity. Structural changes that increase reaction speed were found to decrease quantum yields, and vice versa, so that excited state lifetime and efficiency are inversely correlated in contrast to the trends observed when comparing retinal photochemistry in protein and solution environments. Our results suggest a simple model where backbone modifications and Schiff base substituents control barrier heights on the excited-state potential energy surface and therefore determine speed, product distribution, and overall yield of the photochemical process.


Asunto(s)
Fotoquímica , Protones , Retinaldehído/química , Bases de Schiff/química , Modelos Moleculares , Estructura Molecular , Soluciones
17.
Opt Lett ; 39(14): 4112-5, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121664

RESUMEN

We describe two noncollinear optical parametric amplifier (NOPA) systems pumped by either the second (515 nm) or the third (343 nm) harmonic from an Yb:KGW source. Pulse durations as short as 6.8 fs are readily obtained by compression with chirped mirrors. The availability of both the second and third harmonics for NOPA pumping allows for gap-free tuning from 520 to 980 nm. The use of an intermediate NOPA to generate seed light at 780 nm extends the tuning range of the third harmonic pumped NOPA toward 450 nm.

19.
J Phys Chem A ; 118(43): 9976-84, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25244029

RESUMEN

We have developed the technique of population-controlled impulsive vibrational spectroscopy (PC-IVS) aimed at providing high-quality, background-free Raman spectra of excited electronic states and their dynamics. Our approach consists of a modified transient absorption experiment using an ultrashort (<10 fs) pump pulse with additional electronic excitation and control pulses. The latter allows for the experimental isolation of excited-state vibrational coherence and, hence, vibrational spectra. We illustrate the capabilities of PC-IVS by reporting the Raman spectra of well-established molecular systems such as the carotenoid astaxanthin and trans-stilbene and present the first excited-state Raman spectra of the retinal protonated Schiff base chromophore in solution. Our approach, illustrated here with impulsive vibrational spectroscopy, is equally applicable to transient and even multidimensional infrared and electronic spectroscopies to experimentally isolate spectroscopic signatures of interest.

20.
J Am Chem Soc ; 134(20): 8318-20, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22536821

RESUMEN

The drastically different reactivity of the retinal chromophore in solution compared to the protein environment is poorly understood. Here, we show that the addition of a methyl group to the C═C backbone of all-trans retinal protonated Schiff base accelerates the electronic decay in solution making it comparable to the proton pump bacteriorhodopsin. Contrary to the notion that reaction speed and efficiency are linked, we observe a concomitant 50% reduction in the isomerization yield. Our results demonstrate that minimal synthetic engineering of potential energy surfaces based on theoretical predictions can induce drastic changes in electronic dynamics toward those observed in an evolution-optimized protein pocket.


Asunto(s)
Proteínas Arqueales/química , Bacteriorodopsinas/química , Halobacterium salinarum/química , Retinaldehído/química , Bases de Schiff/química , Electrones , Isomerismo , Simulación de Dinámica Molecular , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA