Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012175, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38640117

RESUMEN

Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.


Asunto(s)
Proteínas Priónicas , alfa-Sinucleína , Proteínas tau , Proteínas tau/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/análisis , Humanos , Proteínas Priónicas/metabolismo , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Priones/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo
2.
J Biol Chem ; 300(3): 105737, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336292

RESUMEN

Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.


Asunto(s)
Quimioterapia , ARN Polimerasa III , ARN Polimerasa II , ARN Polimerasa I , Saccharomyces cerevisiae , Elongación de la Transcripción Genética , Biocatálisis/efectos de los fármacos , Cinética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/enzimología , Elongación de la Transcripción Genética/efectos de los fármacos
3.
Biochemistry ; 62(1): 95-108, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36525636

RESUMEN

Eukaryotic RNA polymerase II (Pol II) is an essential enzyme that lies at the core of eukaryotic biology. Due to its pivotal role in gene expression, Pol II has been subjected to a substantial number of investigations. We aim to further our understanding of Pol II nucleotide incorporation by utilizing transient-state kinetic techniques to examine Pol II single nucleotide addition on the millisecond time scale. We analyzed Saccharomyces cerevisiae Pol II incorporation of ATP or an ATP analog, Sp-ATP-α-S. Here we have measured the rate constants governing individual steps of the Pol II transcription cycle in the presence of ATP or Sp-ATP-α-S. These results suggest that Pol II catalyzes nucleotide incorporation by binding the next cognate nucleotide and immediately catalyzes bond formation and bond formation is either followed by a conformational change or pyrophosphate release. By comparing our previously published RNA polymerase I (Pol I) and Pol I lacking the A12 subunit (Pol I ΔA12) results that we collected under the same conditions with the identical technique, we show that Pol II and Pol I ΔA12 exhibit similar nucleotide addition mechanisms. This observation indicates that removal of the A12 subunit from Pol I results in a Pol II like enzyme. Taken together, these data further our collective understanding of Pol II's nucleotide incorporation mechanism and the evolutionary divergence of RNA polymerases across the three domains of life.


Asunto(s)
Nucleótidos , ARN Polimerasa II , Nucleótidos/metabolismo , ARN Polimerasa II/metabolismo , Cinética , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
4.
J Biol Chem ; 298(1): 101450, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838819

RESUMEN

Cancer cells are dependent upon an abundance of ribosomes to maintain rapid cell growth and proliferation. The rate-limiting step of ribosome biogenesis is ribosomal RNA (rRNA) synthesis by RNA polymerase I (Pol I). Therefore, a goal of the cancer therapeutic field is to develop and characterize Pol I inhibitors. Here, we elucidate the mechanism of Pol I inhibition by a first-in-class small-molecule BMH-21. To characterize the effects of BMH-21 on Pol I transcription, we leveraged high-resolution in vitro transcription assays and in vivo native elongating transcript sequencing (NET-seq). We find that Pol I transcription initiation, promoter escape, and elongation are all inhibited by BMH-21 in vitro. In particular, the transcription elongation phase is highly sensitive to BMH-21 treatment, as it causes a decrease in transcription elongation rate and an increase in paused Pols on the ribosomal DNA (rDNA) template. In vivo NET-seq experiments complement these findings by revealing a reduction in Pol I occupancy on the template and an increase in sequence-specific pausing upstream of G-rich rDNA sequences after BMH-21 treatment. Collectively, these data reveal the mechanism of action of BMH-21, which is a critical step forward in the development of this compound and its derivatives for clinical use.


Asunto(s)
ADN Ribosómico , Compuestos Heterocíclicos de 4 o más Anillos , ARN Polimerasa I , Transcripción Genética , ADN Ribosómico/genética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/genética , Transcripción Genética/efectos de los fármacos
5.
J Biol Chem ; 298(12): 102730, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423683

RESUMEN

One of the first steps in ribosome biogenesis is transcription of the ribosomal DNA by RNA polymerase I (Pol I). Processing of the resultant rRNA begins cotranscriptionally, and perturbation of Pol I transcription elongation results in defective rRNA processing. Mechanistic insight regarding the link between transcription elongation and ribosome assembly is lacking because of limited in vivo methods to assay Pol I transcription. Here, we use native elongating transcript sequencing (NET-Seq) with a strain of Saccharomyces cerevisiae containing a point mutation in Pol I, rpa190-F1205H, which results in impaired rRNA processing and ribosome assembly. We previously demonstrated that this mutation caused a mild reduction in the transcription elongation rate of Pol I in vitro; however, transcription elongation by the mutant has not been characterized in vivo. Here, our findings demonstrate that the mutant Pol I has an increased pause propensity during processive transcription elongation both in vitro and in vivo. NET-Seq reveals that rpa190-F1205H Pol I displays alternative pause site preferences in vivo. Specifically, the mutant is sensitized to A/G residues in the RNA:DNA hybrid and at the last incorporated nucleotide position. Furthermore, both NET-Seq and EM analysis of Miller chromatin spreads reveal pileups of rpa190-F1205H Pol I throughout the ribosomal DNA, particularly at the 5' end of the 35S gene. This combination of in vitro and in vivo analyses of a Pol I mutant provides novel insights into Pol I elongation properties and indicates how these properties are crucial for efficient cotranscriptional rRNA processing and ribosome assembly.


Asunto(s)
ARN Polimerasa I , Saccharomyces cerevisiae , Elongación de la Transcripción Genética , Fenómenos Bioquímicos , ADN Ribosómico/genética , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
6.
J Biol Chem ; 298(12): 102690, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372232

RESUMEN

RNA Polymerase I (Pol I) synthesizes rRNA, which is the first and rate-limiting step in ribosome biogenesis. Factors governing the stability of the polymerase complex are not known. Previous studies characterizing Pol I inhibitor BMH-21 revealed a transcriptional stress-dependent pathway for degradation of the largest subunit of Pol I, RPA194. To identify the E3 ligase(s) involved, we conducted a cell-based RNAi screen for ubiquitin pathway genes. We establish Skp-Cullin-F-box protein complex F-box protein FBXL14 as an E3 ligase for RPA194. We show that FBXL14 binds to RPA194 and mediates RPA194 ubiquitination and degradation in cancer cells treated with BMH-21. Mutation analysis in yeast identified lysines 1150, 1153, and 1156 on Rpa190 relevant for the protein degradation. These results reveal the regulated turnover of Pol I, showing that the stability of the catalytic subunit is controlled by the F-box protein FBXL14 in response to transcription stress.


Asunto(s)
Proteínas F-Box , Proteínas Ligasas SKP Cullina F-box , Transcripción Genética , Dominio Catalítico , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitinación , Humanos , Transcripción Genética/genética
7.
Can Vet J ; 64(9): 828-832, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37663018

RESUMEN

An 8-year-old Saanen goat doe was seen for inappetence, tachycardia, and intermittent bluish-grey discoloration of the oral mucous membranes. On physical examination, the goat was mildly tachypneic and tachycardic, with reduced sounds auscultated on the left side of the thorax. Euthanasia was elected. Necropsy revealed an infiltrative, multinodular mass within the left thoracic cavity and innumerable small, tan nodules disseminated across the pleura of the lungs, thoracic walls, and diaphragm. Upon histologic examination, the mass was composed of highly pleomorphic, fusiform to polygonal cells. Neoplastic cells exhibited positive immunoreactivity for both cytokeratin and vimentin, consistent with a diagnosis of biphasic pleural mesothelioma. Key clinical message: Mesothelioma has rarely been described in the goat but should be considered as a differential diagnosis for thoracic masses in small ruminants, along with thymoma; metastatic neoplasia; carcinomatosis; and granulomatous lesions caused by parasites, bacteria, and fungi.


Mésothéliome pleural biphasique chez une chèvre. Une chèvre Saanen âgée de 8 ans a été vue pour de l'inappétence, une tachycardie et une décoloration gris bleuâtre intermittente des muqueuses buccales. À l'examen physique, la chèvre était légèrement tachypnéique et tachycardique, avec des sons réduits auscultés du côté gauche du thorax. Il a été décidé d'euthanasier l'animal. L'autopsie a révélé une masse multinodulaire infiltrante dans la cavité thoracique gauche et d'innombrables petits nodules brun clair disséminés à travers la plèvre pulmonaire, les parois thoraciques et le diaphragme. À l'examen histologique, la masse était composée de cellules hautement pléomorphes, fusiformes à polygonales. Les cellules néoplasiques ont présenté une immunoréactivité positive pour la cytokératine et la vimentine, compatible avec un diagnostic de mésothéliome pleural biphasique.Message clinique clé:Le mésothéliome a rarement été décrit chez la chèvre mais doit être considéré comme un diagnostic différentiel des masses thoraciques chez les petits ruminants, avec le thymome, la néoplasie métastatique, la carcinomatose et les lésions granulomateuses causées par des parasites, des bactéries et des champignons.(Traduit par Dr Serge Messier).


Asunto(s)
Carcinoma , Enfermedades de las Cabras , Mesotelioma , Animales , Cabras , Eutanasia Animal , Mesotelioma/diagnóstico , Mesotelioma/veterinaria , Autopsia/veterinaria , Carcinoma/veterinaria , Enfermedades de las Cabras/diagnóstico
8.
J Biol Chem ; 296: 100051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33168625

RESUMEN

Eukaryotes express at least three nuclear DNA-dependent RNA polymerases (Pols) responsible for synthesizing all RNA required by the cell. Despite sharing structural homology, they have functionally diverged to suit their distinct cellular roles. Although the Pols have been studied extensively, direct comparison of their enzymatic properties is difficult because studies are often conducted under disparate experimental conditions and techniques. Here, we directly compare and reveal functional differences between Saccharomyces cerevisiae Pols I and II using a series of quantitative in vitro transcription assays. We find that Pol I single-nucleotide and multinucleotide addition rate constants are faster than those of Pol II. Pol I elongation complexes are less stable than Pol II elongation complexes, and Pol I is more error prone than Pol II. Collectively, these data show that the enzymatic properties of the Pols have diverged over the course of evolution, optimizing these enzymes for their unique cellular responsibilities.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cinética , Polimorfismo de Nucleótido Simple , Transcripción Genética
9.
Trends Genet ; 35(10): 724-733, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31358304

RESUMEN

Ribosomal RNA (rRNA) is co- and post-transcriptionally processed into active ribosomes. This process is dynamically regulated by direct covalent modifications of the polymerase that synthesizes the rRNA, RNA polymerase I (Pol I), and by interactions with cofactors that influence initiation, elongation, and termination activities of Pol I. The rate of transcription elongation by Pol I directly influences processing of nascent rRNA, and changes in Pol I transcription rate result in alternative rRNA processing events that lead to cellular signaling alterations and stress. It is clear that in divergent species, there exists robust organization of nascent rRNA processing events during transcription elongation. This review evaluates the current state of our understanding of the complex relationship between transcription elongation and rRNA processing.


Asunto(s)
ARN Polimerasa I/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Transcripción Genética , Animales , Proliferación Celular , Susceptibilidad a Enfermedades , Eucariontes/genética , Eucariontes/metabolismo , Humanos , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transducción de Señal
10.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409307

RESUMEN

Anaplasma spp. are obligate intracellular, tick-borne, bacterial pathogens that cause bovine and human anaplasmosis. We lack tools to prevent these diseases in part due to major knowledge gaps in our fundamental understanding of the tick-pathogen interface, including the requirement for and molecules involved in iron transport during tick colonization. We determine that iron is required for the pathogen Anaplasma marginale, which causes bovine anaplasmosis, to replicate in Dermacentor andersoni tick cells. Using bioinformatics and protein modeling, we identified three orthologs of the Gram-negative siderophore-independent iron uptake system, FbpABC. Am069, the A. marginale ortholog of FbpA, lacks predicted iron-binding residues according to the NCBI conserved domain database. However, according to protein modeling, the best structural orthologs of Am069 are iron transport proteins from Cyanobacteria and Campylobacterjejuni. We then determined that all three A. marginale genes are modestly differentially expressed in response to altered host cell iron levels, despite the lack of a Ferric uptake regulator or operon structure. This work is foundational for building a mechanistic understanding of iron uptake, which could lead to interventions to prevent bovine and human anaplasmosis.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Dermacentor , Anaplasma , Anaplasma marginale/genética , Anaplasmosis/microbiología , Animales , Bovinos , Dermacentor/genética , Dermacentor/microbiología , Humanos , Hierro
11.
Biophys J ; 120(20): 4378-4390, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34509510

RESUMEN

RNA polymerases execute the first step in gene expression: transcription of DNA into RNA. Eukaryotes, unlike prokaryotes, express at least three specialized nuclear multisubunit RNA polymerases (Pol I, Pol II, and Pol III). RNA polymerase I (Pol I) synthesizes the most abundant RNA, ribosomal RNA. Nearly 60% of total transcription is devoted to ribosomal RNA synthesis, making it one of the cell's most energy consuming tasks. While a kinetic mechanism for nucleotide addition catalyzed by Pol I has been reported, it remains unclear to what degree different nucleotide sequences impact the incorporation rate constants. Furthermore, it is currently unknown if the previous investigation of a single-nucleotide incorporation was sensitive to the translocation step. Here, we show that Pol I exhibits considerable variability in both kmax and K1/2values using an in vitro multi-NTP incorporation assay measuring AMP and GMP incorporations. We found the first two observed nucleotide incorporations exhibited faster kmax-values (∼200 s-1) compared with the remaining seven positions (∼60 s-1). Additionally, the average K1/2 for ATP incorporation was found to be approximately threefold higher compared with GTP, suggesting Pol I has a tighter affinity for GTP compared with ATP. Our results demonstrate that Pol I exhibits significant variability in the observed rate constant describing each nucleotide incorporation. Understanding of the differences between the Pol enzymes will provide insight on the evolutionary pressures that led to their specialized roles. Therefore, the findings resulting from this work are critically important for comparisons with other polymerases across all domains of life.


Asunto(s)
Nucleótidos , ARN Polimerasa I , Catálisis , Cinética , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II
12.
Biophys J ; 120(10): 1883-1893, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737158

RESUMEN

Eukaryotes express three DNA-dependent RNA polymerases (Pols) that are responsible for the entirety of cellular genomic expression. The three Pols have evolved to express specific cohorts of RNAs and thus have diverged both structurally and functionally to efficiently execute their specific transcriptional roles. One example of this divergence is Pol I's inclusion of a proofreading factor as a bona fide subunit, as opposed to Pol II, which recruits a transcription factor, TFIIS, for proofreading. The A12.2 (A12) subunit of Pol I shares homology with both the Rpb9 subunit of Pol II as well as the transcription factor TFIIS, which promotes RNA cleavage and proofreading by Pol II. In this study, the functional contribution of the TFIIS-like C-terminal domain and the Rpb9-like N-terminal domain of the A12 subunit are probed through mutational analysis. We found that a Pol I mutant lacking the C-terminal domain of the A12 subunit (ΔA12CTD Pol I) is slightly faster than wild-type Pol I in single-nucleotide addition, but ΔA12CTD Pol I lacks RNA cleavage activity. ΔA12CTD Pol I is likewise similar to wild-type Pol I in elongation complex stability, whereas removal of the entire A12 subunit (ΔA12 Pol I) was previously demonstrated to stabilize transcription elongation complexes. Furthermore, the ΔA12CTD Pol I is sensitive to downstream sequence context, as ΔA12CTD Pol I exposed to AT-rich downstream DNA is more arrest prone than ΔA12 Pol I. These data demonstrate that the N-terminal domain of A12 does not stimulate Pol I intrinsic RNA cleavage activity, but rather contributes to core transcription elongation properties of Pol I.


Asunto(s)
ARN Polimerasa I , Proteínas de Saccharomyces cerevisiae , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Transcripción Genética
13.
Genet Sel Evol ; 53(1): 52, 2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34147084

RESUMEN

Expression of the cellular prion protein (PrPC) is crucial for the development of prion diseases. Amino acid changes in PrPC or a reduced amount of PrPC may modulate disease resistance. The relative abundance of C1, a natural α-cleavage fragment of PrPC, was previously found to be associated with a resistant PRNP genotype in sheep. Goats are another small ruminant where classical scrapie susceptibility is under strong genetic control. In this study, we assessed PrPC in goats for the existence of similar associations between PrPC fragments and genotype. Brain tissue homogenates from scrapie-free goats with wild type PRNP or polymorphisms (I142M, H143R, N146S, or Q222K) were deglycosylated prior to immunoblot for assessment of the relative abundance of the C1 fragment of PrPC. The presence of K222 or S146 alleles demonstrated significantly different relative levels of C1 compared to that observed in wild type goats, which suggests that the genotype association with C1 is neither unique to sheep nor exclusive to the ovine Q171R dimorphism.


Asunto(s)
Cabras/genética , Polimorfismo de Nucleótido Simple , Proteínas Priónicas/genética , Proteolisis , Animales , Encéfalo/metabolismo , Mutación Missense , Proteínas Priónicas/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(50): E11633-E11641, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30482860

RESUMEN

DNA sequence motifs that affect RNA polymerase transcription elongation are well studied in prokaryotic organisms and contribute directly to regulation of gene expression. Despite significant work on the regulation of eukaryotic transcription, the effect of DNA template sequence on RNA polymerase I (Pol I) transcription elongation remains unknown. In this study, we examined the effects of DNA sequence motifs on Pol I transcription elongation kinetics in vitro and in vivo. Specifically, we characterized how the spy rho-independent terminator motif from Escherichia coli directly affects Saccharomyces cerevisiae Pol I activity, demonstrating evolutionary conservation of sequence-specific effects on transcription. The insight gained from this analysis led to the identification of a homologous sequence in the ribosomal DNA of S. cerevisiae We then used native elongating transcript sequencing (NETSeq) to determine whether Pol I encounters pause-inducing sequences in vivo. We found hundreds of positions within the ribosomal DNA (rDNA) that reproducibly induce pausing in vivo. We also observed significantly lower Pol I occupancy at G residues in the rDNA, independent of other sequence context, indicating differential nucleotide incorporation rates for Pol I in vivo. These data demonstrate that DNA template sequence elements directly influence Pol I transcription elongation. Furthermore, we have developed the necessary experimental and analytical methods to investigate these perturbations in living cells going forward.


Asunto(s)
ADN Ribosómico/genética , ADN Ribosómico/metabolismo , ARN Polimerasa I/metabolismo , Elongación de la Transcripción Genética , Secuencia de Bases , Secuencia Conservada , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Regiones Terminadoras Genéticas , Uridina Trifosfato/metabolismo
15.
Biochem J ; 476(15): 2209-2219, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31341008

RESUMEN

Over the past two decades, ribosome biogenesis has emerged as an attractive target for cancer treatment. In this study, two high-throughput screens were used to identify ribosome biogenesis inhibitors. Our primary screen made use of the HaloTag selective labeling strategy to identify compounds that decreased the abundance of newly synthesized ribosomes in A375 malignant melanoma cells. This screen identified 5786 hit compounds. A subset of those initial hit compounds were tested using a secondary screen that directly measured pre-ribosomal RNA (pre-rRNA) abundance as a reporter of rRNA synthesis rate, using quantitative RT-PCR. From the secondary screen, we identified two structurally related compounds that are potent inhibitors of rRNA synthesis. These two compounds, Ribosome Biogenesis Inhibitors 1 and 2 (RBI1 and RBI2), induce a substantial decrease in the viability of A375 cells, comparable to the previously published ribosome biogenesis inhibitor CX-5461. Anchorage-independent cell growth assays further confirmed that RBI2 inhibits cell growth and proliferation. Thus, the RBI compounds have promising properties for further development as potential cancer chemotherapeutics.


Asunto(s)
Antineoplásicos , Benzotiazoles , Naftiridinas , Neoplasias , ARN Neoplásico/biosíntesis , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Benzotiazoles/química , Benzotiazoles/farmacología , Línea Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Naftiridinas/química , Naftiridinas/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
16.
Biochemistry ; 58(16): 2116-2124, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30912638

RESUMEN

Eukaryotic cells express at least three nuclear RNA polymerases (Pols), each with a unique set of gene targets. Though these enzymes are homologous, there are many differences among the Pols. In this study, a novel assay for Pol I transcription elongation was developed to probe enzymatic differences among the Pols. In Saccharomyces cerevisiae, a mutation in the universally conserved hinge region of the trigger loop, E1103G, induces a gain of function in the Pol II elongation rate, whereas the corresponding mutation in Pol I, E1224G, results in a loss of function. The E1103G Pol II mutation stabilizes the closed conformation of the trigger loop, promoting the catalytic step, the putative rate-limiting step for Pol II. In single-nucleotide and multinucleotide addition assays, we observe a decrease in the rate of nucleotide addition and dinucleotide cleavage activity by E1224G Pol I and an increase in the rate of misincorporation. Collectively, these data suggest that Pol I is at least in part rate-limited by the same step as Pol II, the catalytic step.


Asunto(s)
Pruebas de Enzimas/métodos , Células Eucariotas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa I/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Secuencia de Bases , Biocatálisis , Dominio Catalítico/genética , Células Eucariotas/enzimología , Evolución Molecular , Variación Genética , Mutación Missense , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biophys J ; 114(11): 2507-2515, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874602

RESUMEN

Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor.


Asunto(s)
Subunidades de Proteína/metabolismo , ARN Polimerasa I/química , ARN Polimerasa I/metabolismo , Secuencia de Bases , Estabilidad de Enzimas , ARN/genética , ARN/metabolismo , Saccharomyces cerevisiae/enzimología
18.
Vet Res ; 49(1): 53, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29941017

RESUMEN

Efforts to develop live attenuated vaccines against Mycobacterium avium subspecies paratuberculosis (Map), using indirect methods to screen Map deletion mutants for potential efficacy, have not been successful. A reduction in the capacity to survive in macrophages has not predicted the ability of mutants to survive in vivo. Previous studies for screening of three deletion mutants in cattle and goats revealed one mutant, with a deletion in relA (ΔMap/relA), could not establish a persistent infection. Further studies, using antigen presenting cells (APC), blood dendritic cells and monocyte derived DC, pulsed with ΔMap/relA or a 35 kDa Map membrane protein (MMP) revealed a component of the response to ΔMap/relA was directed towards MMP. As reported herein, we developed a bacterium viability assay and cell culture assays for analysis and evaluation of cytotoxic T cells generated against ΔMap/relA or MMP. Analysis of the effector activity of responding cells revealed the reason ΔMap/relA could not establish a persistent infection was that vaccination elicited development of cytotoxic CD8 T cells (CTL) with the capacity to kill intracellular bacteria. We demonstrated the same CTL response could be elicited with two rounds of antigenic stimulation of APC pulsed with ΔMap/relA or MMP ex vivo. Cytotoxicity was mediated through the perforin granzyme B pathway. Finally, cognate recognition of peptides presented in context of MHC I and II molecules to CD4 and CD8 T cells is required for development of CTL.


Asunto(s)
Proteínas Bacterianas/genética , Secuencia de Bases/genética , Proteínas de la Membrana/genética , Mycobacterium avium subsp. paratuberculosis/genética , Eliminación de Secuencia/genética , Linfocitos T Citotóxicos/inmunología , Animales , Proteínas Bacterianas/metabolismo , Bovinos , Masculino , Proteínas de la Membrana/metabolismo , Viabilidad Microbiana , Mycobacterium avium subsp. paratuberculosis/inmunología , Mycobacterium avium subsp. paratuberculosis/metabolismo , Vacunas Atenuadas
19.
Biochemistry ; 56(42): 5654-5662, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28846843

RESUMEN

All cellular RNA polymerases are influenced by protein factors that stimulate RNA polymerase-catalyzed cleavage of the nascent RNA. Despite divergence in amino acid sequence, these so-called "cleavage factors" appear to share a common mechanism of action. Cleavage factors associate with the polymerase through a conserved structural element of the polymerase known as the secondary channel or pore. This mode of association enables the cleavage factor to reach through the secondary channel into the polymerase active site to reorient the active site divalent metal ions. This reorientation converts the polymerase active site into a nuclease active site. Interestingly, eukaryotic RNA polymerases I and III (Pols I and III, respectively) have incorporated their cleavage factors as bona fide subunits known as A12.2 and C11, respectively. Although it is clear that A12.2 and C11 dramatically stimulate the polymerase's cleavage activity, it is not known if or how these subunits affect the polymerization mechanism. In this work we have used transient-state kinetic techniques to characterize a Pol I isoform lacking A12.2. Our data clearly demonstrate that the A12.2 subunit profoundly affects the kinetics and energetics of the elementary steps of Pol I-catalyzed nucleotide incorporation. Given the high degree of conservation between polymerase-cleavage factor interactions, these data indicate that cleavage factor-modulated nucleotide incorporation mechanisms may be common to all cellular RNA polymerases.


Asunto(s)
Nucleótidos/química , ARN Polimerasa I/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Factores de Escisión y Poliadenilación de ARNm/química , Cinética , Nucleótidos/metabolismo , ARN Polimerasa I/metabolismo , ARN Polimerasa III/química , ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
20.
J Biol Chem ; 291(6): 3010-8, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26663077

RESUMEN

Although ribosomal RNA represents the majority of cellular RNA, and ribosome synthesis is closely connected to cell growth and proliferation rates, a complete understanding of the factors that influence transcription of ribosomal DNA is lacking. Here, we show that the THO complex positively affects transcription by RNA polymerase I (Pol I). We found that THO physically associates with the rDNA repeat and interacts genetically with Pol I transcription initiation factors. Pol I transcription in hpr1 or tho2 null mutants is dramatically reduced to less than 20% of the WT level. Pol I occupancy of the coding region of the rDNA in THO mutants is decreased to ~50% of WT level. Furthermore, although the percentage of active rDNA repeats remains unaffected in the mutant cells, the overall rDNA copy number increases ~2-fold compared with WT. Together, these data show that perturbation of THO function impairs transcription initiation and elongation by Pol I, identifying a new cellular target for the conserved THO complex.


Asunto(s)
Complejos Multiproteicos/metabolismo , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongación de la Transcripción Genética/fisiología , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética/fisiología , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Polimerasa I/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA