Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 89(7): 075103, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30068123

RESUMEN

A new experimental facility has been designed and constructed to study driven granular media in a low-gravity environment. This versatile instrument, fully automatized, with a modular design based on several interchangeable experimental cells, allows us to investigate research topics ranging from dilute to dense regimes of granular media such as granular gas, segregation, convection, sound propagation, jamming, and rheology-all without the disturbance by gravitational stresses active on Earth. Here, we present the main parameters, protocols, and performance characteristics of the instrument. The current scientific objectives are then briefly described and, as a proof of concept, some first selected results obtained in low gravity during parabolic flight campaigns are presented.

2.
Phys Rev E ; 95(6-1): 062120, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709200

RESUMEN

We present a systematic experimental study of the confinement effect on the crystallization of a monolayer of magnetized beads. The particles are millimeter-scale grains interacting through the short range magnetic dipole-dipole potential induced by an external magnetic field. The grains are confined by repulsing walls and are homogeneously distributed inside the cell. A two-dimensional (2d) Brownian motion is induced by horizontal mechanical vibrations. Therefore, the balance between magnetic interaction and agitation allows investigating 2d phases through direct visualization. The effect of both confinement size and shape on the grains' organization in the low-energy state has been investigated. Concerning the confinement shape, triangular, square, pentagonal, hexagonal, heptagonal, and circular geometries have been considered. The grain organization was analyzed after a slow cooling process. Through the measurement of the averaged bond order parameter for the different confinement geometries, it has been shown that cell geometry strongly affects the ordering of the system. Moreover, many kinds of defects, whose observation rate is linked to the geometry, have been observed: disclinations, dislocations, defects chain, and also more exotic defects such as a rosette. Finally, the influence of confinement size has been investigated and we point out that no finite-size effect occurs for a hexagonal cell, but the finite-size effect changes from one geometry to another.

3.
Artículo en Inglés | MEDLINE | ID: mdl-23848665

RESUMEN

We present an experimental model system to study two-dimensional phase transitions. This system is composed of a monolayer of millimetric beads interacting through shor range magnetic dipole-dipole interactions. As the system is athermal, a mechanical agitation is used to produce an erratic motion of the beads. The two-dimensional melting scenario predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young theory is observed. Each phase (liquid-hexatic-solid) has been highlighted with the use of both static and dynamic order parameters. Translational and orientational order are, respectively, estimated through the pair correlation function g(r) and both orientational correlation function g(6)(r) and its temporal counterpart g(6)(t). We observe two transitions by tuning the applied magnetic field H. First, a loss of translational order without loss of orientational order is observed. This is the signature of the transition from the solid phase to the so-called "hexatic" phase. Finally, the orientational order disappears, leading to a liquidlike structure.


Asunto(s)
Separación Inmunomagnética/instrumentación , Separación Inmunomagnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Modelos Químicos , Modelos Moleculares , Simulación por Computador , Calor , Conformación Molecular , Transición de Fase
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 1): 021403, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21405845

RESUMEN

We report experiments on soap film configurations in a triangular prism for which the shape factor can be changed continuously. Two stable configurations can be observed for a range of the shape factor h, being the prism-height/edge-length ratio. A hysteretic behavior is found, due to the occurrence of another local minima in the free energy. Contrary to a common belief, soap films can be trapped in a particular configuration being different from a global surface minimization. This metastability can be evidenced from a geometrical model based on idealized structures. Depending on the configuration, the transition is either first or second order, providing clues on the structural relaxations taking place into three-dimensional foams, such as T1 rearrangements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA