Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002572, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603542

RESUMEN

The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Humanos , Animales , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Relojes Circadianos/genética , Actividad Motora , Drosophila melanogaster/metabolismo
2.
Int Microbiol ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151632

RESUMEN

Tectona grandis Linn, commonly known as teak, is traditionally used to treat a range of diseases, including the common cold, headaches, bronchitis, scabies, diabetes, inflammation, and others. The present study was conducted with the purpose of isolating and identifying the active compounds in T. grandis leaf against a panel of Vibrio spp., which may induce vibriosis in shrimp, using bioassay-guided purification. The antimicrobial activity was assessed using the microdilution method, followed by the brine shrimp lethality assay to determine toxicity. Following an initial screening with a number of different solvents, it was established that the acetone extract was the most effective. The acetone extract was then exposed to silica gel chromatography followed by reversed-phase HPLC and further UHPLC-orbitrap-ion trap mass spectrometry to identify the active compounds. Three compounds called 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin were identified with substantial anti-microbial action against V. parahaemolyticus, V. alginolyticus, V. harveyi, V. anguillarum, and V. vulnificus. The IC50 values of the three compounds viz. 1-hydroxy-2,6,8-trimethoxy-9,10-anthraquinone, deoxyanserinone B, and khatmiamycin varied between 2 and 28, 7 and 38, and 7 and 56 µg/mL, respectively, which are as good as the standard antibiotics such as amoxicillin and others. The in vivo toxicity test revealed that the compounds were non-toxic to shrimp. The results of the study suggest that T. grandis leaf can be used as a source of bioactive compounds to treat Vibrio species in shrimp farming.

3.
Proc Natl Acad Sci U S A ; 117(2): 1097-1106, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31843923

RESUMEN

The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand-receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm's monthly cycle.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Homeostasis , Proteínas de Insectos/metabolismo , Luna , Neuropéptidos/metabolismo , Poliquetos/fisiología , Maduración Sexual/fisiología , Transducción de Señal/fisiología , Animales , Encéfalo , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Hormona Liberadora de Gonadotropina/genética , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Proteínas de Insectos/genética , Invertebrados/genética , Neuropéptidos/genética , Filogenia , Poliquetos/genética , Poliquetos/crecimiento & desarrollo , Receptores de Neuropéptido , Receptores de Péptidos/genética , Transducción de Señal/genética , Factores de Transcripción
4.
PLoS Biol ; 17(11): e3000499, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31675356

RESUMEN

The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. These include abundant yolk protein production in egg-laying species, an energetically costly process under extensive transcriptional control. Here, we used the model organism Caenorhabditis elegans to provide evidence for the spatiotemporally defined interaction of two evolutionarily conserved transcription factors, CEH-60/PBX and UNC-62/MEIS, acting as a gateway to yolk protein production. Via proteomics, bimolecular fluorescence complementation (BiFC), and biochemical and functional readouts, we show that this interaction occurs in the intestine of animals at the onset of sexual maturity and suffices to support the reproductive program. Our electron micrographs and functional assays provide evidence that intestinal PBX/MEIS cooperation drives another process that depends on lipid mobilization: the formation of an impermeable epicuticle. Without this lipid-rich protective layer, mutant animals are hypersensitive to exogenous oxidative stress and are poor partners for mating. Dedicated communication between the hypodermis and intestine in C. elegans likely supports these physiological outcomes, and we propose a fundamental role for the conserved PBX/MEIS interaction in multicellular signaling networks that rely on lipid homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas de Homeodominio/fisiología , Factores Generales de Transcripción/fisiología , Vitelogénesis/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Metabolismo de los Lípidos , Estrés Oxidativo , Permeabilidad , Factores de Transcripción , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismo
5.
PLoS Genet ; 15(2): e1007945, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30779740

RESUMEN

Aversive learning and memories are crucial for animals to avoid previously encountered stressful stimuli and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learned behaviors, but their precise role is not well understood. Here, we show that neuropeptides of the evolutionarily conserved MyoInhibitory Peptide (MIP)-family modify salt chemotaxis behavior in Caenorhabditis elegans according to previous experience. MIP signaling, through activation of the G protein-coupled receptor SPRR-2, is required for short-term gustatory plasticity. In addition, MIP/SPRR-2 neuropeptide-receptor signaling mediates another type of aversive gustatory learning called salt avoidance learning that depends on de novo transcription, translation and the CREB transcription factor, all hallmarks of long-term memory. MIP/SPRR-2 signaling mediates salt avoidance learning in parallel with insulin signaling. These findings lay a foundation to investigate the suggested orphan MIP receptor orthologs in deuterostomians, including human GPR139 and GPR142.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Aprendizaje/fisiología , Neuropéptidos/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Quimiotaxis/fisiología , Genes de Helminto , Insulina/metabolismo , Memoria a Largo Plazo/fisiología , Mutación , Plasticidad Neuronal , Neuronas/fisiología , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Cloruro de Sodio/metabolismo , Gusto/fisiología , Percepción del Gusto/fisiología
6.
J Neurosci ; 40(31): 6018-6034, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32576621

RESUMEN

Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.


Asunto(s)
Aprendizaje por Asociación/fisiología , Neuropéptido Y/fisiología , Neuropéptidos/fisiología , Neuronas Serotoninérgicas/fisiología , Olfato/fisiología , Animales , Conducta Apetitiva , Reacción de Prevención/efectos de los fármacos , Butanonas/farmacología , Caenorhabditis elegans , Diacetil/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica , Locomoción , Masculino , Neuropéptido Y/genética , Neuropéptidos/genética
7.
Proc Natl Acad Sci U S A ; 114(20): E4065-E4074, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28461507

RESUMEN

In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in Celegans TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Hormona Liberadora de Tirotropina/metabolismo , Secuencia de Aminoácidos , Animales , Tamaño Corporal , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Dieta , Evolución Molecular , Motilidad Gastrointestinal , Interferencia de ARN , Receptores de Hormona Liberadora de Tirotropina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
8.
J Biol Chem ; 293(16): 6052-6063, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487130

RESUMEN

Neuropeptides constitute a vast and functionally diverse family of neurochemical signaling molecules and are widely involved in the regulation of various physiological processes. The nematode Caenorhabditis elegans is well-suited for the study of neuropeptide biochemistry and function, as neuropeptide biosynthesis enzymes are not essential for C. elegans viability. This permits the study of neuropeptide biosynthesis in mutants lacking certain neuropeptide-processing enzymes. Mass spectrometry has been used to study the effects of proprotein convertase and carboxypeptidase mutations on proteolytic processing of neuropeptide precursors and on the peptidome in C. elegans However, the enzymes required for the last step in the production of many bioactive peptides, the carboxyl-terminal amidation reaction, have not been characterized in this manner. Here, we describe three genes that encode homologs of neuropeptide amidation enzymes in C. elegans and used tandem LC-MS to compare neuropeptides in WT animals with those in newly generated mutants for these putative amidation enzymes. We report that mutants lacking both a functional peptidylglycine α-hydroxylating monooxygenase and a peptidylglycine α-amidating monooxygenase had a severely altered neuropeptide profile and also a decreased number of offspring. Interestingly, single mutants of the amidation enzymes still expressed some fully processed amidated neuropeptides, indicating the existence of a redundant amidation mechanism in C. elegans All MS data are available via ProteomeXchange with the identifier PXD008942. In summary, the key steps in neuropeptide processing in C. elegans seem to be executed by redundant enzymes, and loss of these enzymes severely affects brood size, supporting the need of amidated peptides for C. elegans reproduction.


Asunto(s)
Amidina-Liasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/metabolismo , Neuropéptidos/metabolismo , Amidina-Liasas/química , Amidina-Liasas/genética , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cobre/metabolismo , Eliminación de Gen , Humanos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutación , Neuropéptidos/genética , Alineación de Secuencia , Espectrometría de Masas en Tándem
9.
Expert Rev Proteomics ; 16(2): 131-137, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30575424

RESUMEN

INTRODUCTION: Neuropeptides are neuro-endocrine signaling molecules capable of signaling as neurotransmitters, neuromodulators or neurohormones. Studying how neuropeptide signaling is integrated in endocrine pathways and how neuropeptides regulate endogenous processes is crucial to understanding how multicellular organisms respond to environmental and internal cues. Areas covered: This review will cover proteomics and peptidomics approaches used in researching peptide signaling systems and breakthroughs that were achieved in this field. Both differential mass spectrometry and reverse genetic approaches are commonly used to study neuropeptidergic signaling. The field of proteomics quickly developed in the past decades and expanded from gel-based approaches to include advanced liquid chromatography and mass spectrometry. We explore how proteomics is used to reveal neuropeptide maturation and identify downstream targets of neuropeptide signaling pathways. We show how peptidomics differs from standard proteomics approaches and how it is used to study both neuropeptide processing and signal pathway identification. Expert commentary: Thanks to recent advancements in isolation techniques and increased sensitivity of equipment, proteomics and peptidomics studies of neuropeptide signaling are contributing increasingly to elucidating functional implications of endocrine signaling. Further technical progress should allow for full peptidomic profiling of single neurons, eventually providing us with a complete comprehension of endocrine signaling.


Asunto(s)
Neuropéptidos/metabolismo , Proteómica/métodos , Animales , Humanos , Espectrometría de Masas/métodos
10.
PLoS Biol ; 14(5): e1002457, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27163480

RESUMEN

Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.


Asunto(s)
Óvulo/crecimiento & desarrollo , Planarias/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/genética , Espermatozoides/crecimiento & desarrollo , Animales , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Masculino , Células Neuroendocrinas/metabolismo , Neuropéptido Y/metabolismo , Óvulo/metabolismo , Planarias/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Espermatozoides/metabolismo , Testículo/crecimiento & desarrollo
11.
PLoS Biol ; 14(1): e1002348, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26745270

RESUMEN

Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.


Asunto(s)
Caenorhabditis elegans/fisiología , Células Quimiorreceptoras/fisiología , Mecanorreceptores/metabolismo , Neuropéptidos/fisiología , Olfato , Animales , Locomoción , Plasticidad Neuronal , Transmisión Sináptica
12.
J Cell Physiol ; 233(4): 2993-3003, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28618001

RESUMEN

High attrition of new oncology drug candidates in clinical trials is partially caused by the poor predictive capacity of artificial monolayer cell culture assays early in drug discovery. Monolayer assays do not take the natural three-dimensional (3D) microenvironment of cells into account. As a result, false positive compounds often enter clinical trials, leading to high dropout rates and a waste of time and money. Over the past 2 decades, tissue engineers and cell biologists have developed a broad range of 3D in vitro culturing tools that better represent in vivo cell biology. These tools preserve the 3D architecture of cells and can be used to predict toxicity of and resistance against antitumor agents. Recent progress in tissue engineering further improves 3D models by taking into account the tumor microenvironment, which is important for metastatic progression and vascularization. However, the widespread implementation of 3D cell cultures into cell-based research programs has been limited by various factors, including their cost and reproducibility. In addition, different 3D cell culture techniques often produce spheroids of different size and shape, which can strongly influence drug efficacy and toxicity. Hence, it is imperative to morphometrically characterize multicellular spheroids to avoid generalizations among different spheroid types. Standardized 3D culturing procedures could further reduce data variability and enhance biological relevance. Here, we critically evaluate the benefits and challenges inherent to growing cells in 3D, along with an overview of the techniques used to form spheroids. This is done with a specific focus on antitumor drug screening.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Animales , Humanos , Esferoides Celulares/patología
13.
Gen Comp Endocrinol ; 266: 110-118, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29746853

RESUMEN

Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.


Asunto(s)
Crassostrea/metabolismo , Transducción de Señal , Taquicininas/metabolismo , Secuencia de Aminoácidos , Animales , Crassostrea/genética , Regulación de la Expresión Génica , Filogenia , Receptores de Taquicininas/química , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Reproducción , Taquicininas/química , Taquicininas/genética
14.
Annu Rev Entomol ; 62: 35-52, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-27813667

RESUMEN

Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.


Asunto(s)
Conducta Animal , Insectos/fisiología , Neuropéptidos/metabolismo , Animales , Insectos/crecimiento & desarrollo
15.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28148747

RESUMEN

Several studies have suggested that covert stressors can contribute to bee colony declines. Here we provide a novel case study and show using radiofrequency identification tracking technology that covert deformed wing virus (DWV) infections in adult honeybee workers seriously impact long-term foraging and survival under natural foraging conditions. In particular, our experiments show that adult workers injected with low doses of DWV experienced increased mortality rates, that DWV caused workers to start foraging at a premature age, and that the virus reduced the workers' total activity span as foragers. Altogether, these results demonstrate that covert DWV infections have strongly deleterious effects on honeybee foraging and survival. These results are consistent with previous studies that suggested DWV to be an important contributor to the ongoing bee declines in Europe and the USA. Overall, our study underlines the strong impact that covert pathogen infections can have on individual and group-level performance in bees.


Asunto(s)
Conducta Apetitiva , Abejas/virología , Virus de Insectos/patogenicidad , Alas de Animales/virología , Animales
16.
Mass Spectrom Rev ; 35(3): 350-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25139451

RESUMEN

Reversible phosphorylation is one of the most important post-translational modifications in mammalian cells. Because this molecular switch is an important mechanism that diversifies and regulates proteins in cellular processes, knowledge about the extent and quantity of phosphorylation is very important to understand the complex cellular interplay. Although phosphoproteomics strategies are applied worldwide, they mainly include only molecular mass spectrometry (like MALDI or ESI)-based experiments. Although identification and relative quantification of phosphopeptides is straightforward with these techniques, absolute quantification is more complex and usually requires for specific isotopically phosphopeptide standards. However, the use of elemental mass spectrometry, and in particular inductively coupled plasma mass spectrometry (ICP-MS), in phosphoproteomics-based experiments, allow one to absolutely quantify phosphopeptides. Here, these phosphoproteomic applications with ICP-MS as elemental detector are reviewed. Pioneering work and recent developments in the field are both described. Additionally, the advantage of the parallel use of molecular and elemental mass spectrometry is stressed.


Asunto(s)
Espectrometría de Masas/métodos , Fosfopéptidos/análisis , Proteómica/métodos , Animales , Humanos , Marcaje Isotópico , Fosforilación , Procesamiento Proteico-Postraduccional
17.
J Negat Results Biomed ; 16(1): 14, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830560

RESUMEN

BACKGROUND: A series of human diseases are caused by the misfolding and aggregation of specific proteins or peptides into amyloid fibrils; nine of these diseases, referred to as polyglutamine diseases, are associated with proteins carrying an expanded polyglutamine (polyQ) region. While the presence of this latter is thought to be the determinant factor for the development of polyQ diseases, the non-polyQ regions of the host proteins are thought to play a significant modulating role. METHOD: In order to better understand the role of non-polyQ regions, the toxic effects of model proteins bearing different polyQ regions (containing up to 79 residues) embedded at two distinct locations within the ß-lactamase (BlaP) host enzyme were evaluated in Caenorhabditis elegans. This small organism can be advantageous for the validation of in vitro findings, as it provides a multicellular context yet avoids the typical complexity of common studies relying on vertebrate models. Several phenotypic assays were performed in order to screen for potential toxic effects of the different BlaP-polyQ proteins. RESULTS: Despite the significant in vitro aggregation of BlaP-polyQ proteins with long polyQ regions, none of the BlaP-polyQ chimeras aggregated in the generated transgenic in vivo models. CONCLUSION: The absence of a toxic effect of the expression of BlaP-polyQ chimeras may find its cause in biochemical mechanisms present in vivo to cope with protein aggregation (e.g. presence of chaperones) or in C. elegans' limitations such as its short lifespan. It is plausible that the aggregation propensities of the different BlaP chimeras containing embedded polyQ sequences are too low in this in vivo environment to permit their aggregation. These experiments emphasize the need for several comparative and in vivo verification studies of biologically relevant in vitro findings, which reveal both the strengths and limitations of widely used model systems.


Asunto(s)
Quimera/genética , Modelos Animales , Péptidos/genética , Agregado de Proteínas/genética , beta-Lactamasas/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Péptidos/química , Estructura Secundaria de Proteína , beta-Lactamasas/química
18.
Proc Natl Acad Sci U S A ; 111(24): E2501-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24889636

RESUMEN

The antiglycemic drug metformin, widely prescribed as first-line treatment of type II diabetes mellitus, has lifespan-extending properties. Precisely how this is achieved remains unclear. Via a quantitative proteomics approach using the model organism Caenorhabditis elegans, we gained molecular understanding of the physiological changes elicited by metformin exposure, including changes in branched-chain amino acid catabolism and cuticle maintenance. We show that metformin extends lifespan through the process of mitohormesis and propose a signaling cascade in which metformin-induced production of reactive oxygen species increases overall life expectancy. We further address an important issue in aging research, wherein so far, the key molecular link that translates the reactive oxygen species signal into a prolongevity cue remained elusive. We show that this beneficial signal of the mitohormetic pathway is propagated by the peroxiredoxin PRDX-2. Because of its evolutionary conservation, peroxiredoxin signaling might underlie a general principle of prolongevity signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/efectos de los fármacos , Hormesis/efectos de los fármacos , Hipoglucemiantes/farmacología , Longevidad/efectos de los fármacos , Metformina/farmacología , Peroxirredoxinas/fisiología , Acil-CoA Deshidrogenasa/metabolismo , Aminoácidos de Cadena Ramificada/química , Animales , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Calor , Peróxido de Hidrógeno/química , Mitocondrias/enzimología , Modelos Animales , Estrés Oxidativo , Consumo de Oxígeno , Desplegamiento Proteico , Proteómica , Especies Reactivas de Oxígeno , Rotenona/química , Transducción de Señal , Factores de Tiempo
19.
J Proteome Res ; 15(3): 1080-9, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26828777

RESUMEN

The use of stable isotope tags in quantitative peptidomics offers many advantages, but the laborious identification of matching sets of labeled peptide peaks is still a major bottleneck. Here we present labelpepmatch, an R-package for fast and straightforward analysis of LC-MS spectra of labeled peptides. This open-source tool offers fast and accurate identification of peak pairs alongside an appropriate framework for statistical inference on quantitative peptidomics data, based on techniques from other -omics disciplines. A relevant case study on the desert locust Schistocerca gregaria proves our pipeline to be a reliable tool for quick but thorough explorative analyses.


Asunto(s)
Proteínas de Insectos/química , Neuropéptidos/química , Programas Informáticos , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Saltamontes , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/metabolismo , Espectrometría de Masas , Neuropéptidos/aislamiento & purificación , Neuropéptidos/metabolismo , Proteómica
20.
J Biol Chem ; 290(16): 10336-52, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25666609

RESUMEN

We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Globinas/química , Mioglobina/química , Nitrito Reductasas/química , Oxígeno/metabolismo , Receptores de Neuropéptido/química , Secuencia de Aminoácidos , Animales , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expresión Génica , Globinas/genética , Globinas/metabolismo , Hemo/química , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Hierro/química , Hierro/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mioglobina/genética , Mioglobina/metabolismo , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Oxidación-Reducción , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA