Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 180(4): 796-812.e19, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059778

RESUMEN

Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Ojo/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/normas , Riñón/diagnóstico por imagen , Límite de Detección , Masculino , Ratones , Persona de Mediana Edad , Imagen Óptica/normas , Páncreas/diagnóstico por imagen , Coloración y Etiquetado/normas , Porcinos , Glándula Tiroides/diagnóstico por imagen
2.
Cell ; 179(7): 1661-1676.e19, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835038

RESUMEN

Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.


Asunto(s)
Anticuerpos/uso terapéutico , Aprendizaje Profundo , Diagnóstico por Computador/métodos , Quimioterapia Asistida por Computador/métodos , Neoplasias/patología , Animales , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones SCID , Metástasis de la Neoplasia , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Programas Informáticos , Microambiente Tumoral
3.
Nat Methods ; 17(4): 442-449, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32161395

RESUMEN

Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.


Asunto(s)
Encéfalo/irrigación sanguínea , Aprendizaje Automático , Animales , Imagenología Tridimensional , Ratones
4.
J Neurosci ; 36(2): 280-9, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758822

RESUMEN

Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear-nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. SIGNIFICANCE STATEMENT: An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no new free parameters. Incorporating the adaptive coding properties of neurons will likely improve receptive field models in other sensory modalities too.


Asunto(s)
Adaptación Fisiológica/fisiología , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Mesencéfalo/fisiología , Sonido , Estimulación Acústica , Animales , Vías Auditivas/fisiología , Femenino , Hurones , Modelos Lineales , Masculino , Modelos Neurológicos , Espectrografía del Sonido
5.
PLoS Comput Biol ; 12(11): e1005113, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27835647

RESUMEN

Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Células Receptoras Sensoriales/fisiología , Estimulación Acústica/métodos , Animales , Simulación por Computador , Humanos , Dinámicas no Lineales , Integración de Sistemas
6.
Cell Tissue Res ; 361(1): 159-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26048258

RESUMEN

Models are valuable tools to assess how deeply we understand complex systems: only if we are able to replicate the output of a system based on the function of its subcomponents can we assume that we have probably grasped its principles of operation. On the other hand, discrepancies between model results and measurements reveal gaps in our current knowledge, which can in turn be targeted by matched experiments. Models of the auditory periphery have improved greatly during the last decades, and account for many phenomena observed in experiments. While the cochlea is only partly accessible in experiments, models can extrapolate its behavior without gap from base to apex and with arbitrary input signals. With models we can for example evaluate speech coding with large speech databases, which is not possible experimentally, and models have been tuned to replicate features of the human hearing organ, for which practically no invasive electrophysiological measurements are available. Auditory models have become instrumental in evaluating models of neuronal sound processing in the auditory brainstem and even at higher levels, where they are used to provide realistic input, and finally, models can be used to illustrate how such a complicated system as the inner ear works by visualizing its responses. The big advantage there is that intermediate steps in various domains (mechanical, electrical, and chemical) are available, such that a consistent picture of the evolvement of its output can be drawn. However, it must be kept in mind that no model is able to replicate all physiological characteristics (yet) and therefore it is critical to choose the most appropriate model-or models-for every research question. To facilitate this task, this paper not only reviews three recent auditory models, it also introduces a framework that allows researchers to easily switch between models. It also provides uniform evaluation and visualization scripts, which allow for direct comparisons between models.


Asunto(s)
Cóclea/fisiología , Humanos
7.
Nat Commun ; 11(1): 5626, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159057

RESUMEN

Whole-body imaging of mice is a key source of information for research. Organ segmentation is a prerequisite for quantitative analysis but is a tedious and error-prone task if done manually. Here, we present a deep learning solution called AIMOS that automatically segments major organs (brain, lungs, heart, liver, kidneys, spleen, bladder, stomach, intestine) and the skeleton in less than a second, orders of magnitude faster than prior algorithms. AIMOS matches or exceeds the segmentation quality of state-of-the-art approaches and of human experts. We exemplify direct applicability for biomedical research for localizing cancer metastases. Furthermore, we show that expert annotations are subject to human error and bias. As a consequence, we show that at least two independently created annotations are needed to assess model performance. Importantly, AIMOS addresses the issue of human bias by identifying the regions where humans are most likely to disagree, and thereby localizes and quantifies this uncertainty for improved downstream analysis. In summary, AIMOS is a powerful open-source tool to increase scalability, reduce bias, and foster reproducibility in many areas of biomedical research.


Asunto(s)
Estructuras Animales/diagnóstico por imagen , Aprendizaje Profundo , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Femenino , Procesamiento de Imagen Asistido por Computador , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Bazo/diagnóstico por imagen , Imagen de Cuerpo Entero , Microtomografía por Rayos X
8.
Cancers (Basel) ; 12(5)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456049

RESUMEN

Imaging techniques such as computed tomographies (CT) play a major role in clinical imaging and diagnosis of malignant lesions. In recent years, metal nanoparticle platforms enabled effective payload delivery for several imaging techniques. Due to the possibility of surface modification, metal nanoparticles are predestined to facilitate molecular tumor targeting. In this work, we demonstrate the feasibility of anti-plasma membrane Heat shock protein 70 (Hsp70) antibody functionalized gold nanoparticles (cmHsp70.1-AuNPs) for tumor-specific multimodal imaging. Membrane-associated Hsp70 is exclusively presented on the plasma membrane of malignant cells of multiple tumor entities but not on corresponding normal cells, predestining this target for a tumor-selective in vivo imaging. In vitro microscopic analysis revealed the presence of cmHsp70.1-AuNPs in the cytosol of tumor cell lines after internalization via the endo-lysosomal pathway. In preclinical models, the biodistribution as well as the intratumoral enrichment of AuNPs were examined 24 h after i.v. injection in tumor-bearing mice. In parallel to spectral CT analysis, histological analysis confirmed the presence of AuNPs within tumor cells. In contrast to control AuNPs, a significant enrichment of cmHsp70.1-AuNPs has been detected selectively inside tumor cells in different tumor mouse models. Furthermore, a machine-learning approach was developed to analyze AuNP accumulations in tumor tissues and organs. In summary, utilizing mHsp70 on tumor cells as a target for the guidance of cmHsp70.1-AuNPs facilitates an enrichment and uniform distribution of nanoparticles in mHsp70-expressing tumor cells that enables various microscopic imaging techniques and spectral-CT-based tumor delineation in vivo.

9.
Front Comput Neurosci ; 10: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26903851

RESUMEN

Good metrics of the performance of a statistical or computational model are essential for model comparison and selection. Here, we address the design of performance metrics for models that aim to predict neural responses to sensory inputs. This is particularly difficult because the responses of sensory neurons are inherently variable, even in response to repeated presentations of identical stimuli. In this situation, standard metrics (such as the correlation coefficient) fail because they do not distinguish between explainable variance (the part of the neural response that is systematically dependent on the stimulus) and response variability (the part of the neural response that is not systematically dependent on the stimulus, and cannot be explained by modeling the stimulus-response relationship). As a result, models which perfectly describe the systematic stimulus-response relationship may appear to perform poorly. Two metrics have previously been proposed which account for this inherent variability: Signal Power Explained (SPE, Sahani and Linden, 2003), and the normalized correlation coefficient (CC norm , Hsu et al., 2004). Here, we analyze these metrics, and show that they are intimately related. However, SPE has no lower bound, and we show that, even for good models, SPE can yield negative values that are difficult to interpret. CC norm is better behaved in that it is effectively bounded between -1 and 1, and values below zero are very rare in practice and easy to interpret. However, it was hitherto not possible to calculate CC norm directly; instead, it was estimated using imprecise and laborious resampling techniques. Here, we identify a new approach that can calculate CC norm quickly and accurately. As a result, we argue that it is now a better choice of metric than SPE to accurately evaluate the performance of neural models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA