Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Chem Phys ; 157(16): 164703, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36319421

RESUMEN

Two-dimensional (2D) allotropes of tellurium (Te), recently coined as tellurene, are currently an emerging topic of materials research due to the theoretically predicted exotic properties of Te in its ultrathin form and at the single atomic layer limit. However, a prerequisite for the production of such new and single elemental 2D materials is the development of simple and robust fabrication methods. In the present work, we report three different 2D superstructures of Te on Au(111) surfaces by following an alternative experimental deposition approach. We have investigated the superstructures using low-temperature scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy (AES), and field emission AES. Three superstructures (13 × 13, 8 × 4, and √11 × âˆš11) of 2D Te are observed in our experiments, and the formation of these superstructures is accompanied by the lifting of the characteristic 23 × âˆš3 surface reconstruction of the Au(111) surface. Scanning tunneling spectroscopy reveals a strong dependence of the local electronic properties on the structural arrangement of the Te atoms on the Au(111) support, and we observe superstructure-dependent electronic resonances around the Fermi level and below the Au(111) conduction band. In addition to the appearance of the new electronic resonances, the emergence of band gaps with a p-type charge character has been evidenced for two out of three Te superstructures (13 × 13 and √11 × âˆš11) on the Au(111) support.

2.
Nanotechnology ; 28(33): 335706, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28656908

RESUMEN

We investigated the topological insulator (TI) Bi2Te3 in four different environments (ambient, ultra-high vacuum (UHV), nitrogen gas and organic solvent environment) using scanning probe microscopy (SPM) techniques. Upon prolonged exposure to ambient conditions and organic solvent environments the cleaved surface of the pristine Bi2Te3 is observed to be strongly modified during SPM measurements, while imaging of freshly cleaved Bi2Te3 in UHV and nitrogen gas shows considerably less changes of the Bi2Te3 surface. We conclude that the reduced surface stability upon exposure to ambient conditions is triggered by adsorption of molecular species from ambient, including H2O, CO2, etc which is verified by Auger electron spectroscopy. Our findings of the drastic impact of exposure to ambient on the Bi2Te3 surface are crucial for further in-depth studies of the intrinsic properties of the TI Bi2Te3 and for potential applications that include room temperature TI based devices operated under ambient conditions.

3.
J Phys Chem A ; 121(6): 1182-1188, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28094940

RESUMEN

Determining the mechanism of charge transport through native DNA remains a challenge as different factors such as measuring conditions, molecule conformations, and choice of technique can significantly affect the final results. In this contribution, we have used a new approach to measure current flowing through isolated double-stranded DNA molecules, using fullerene groups to anchor the DNA to a gold substrate. Measurements were performed at room temperature in an inert environment using a conductive AFM technique. It is shown that the π-stacked B-DNA structure is conserved on depositing the DNA. As a result, currents in the nanoampere range were obtained for voltages ranging between ±1 V. These experimental results are supported by a theoretical model that suggests that a multistep hopping mechanism between delocalized domains is responsible for the long-range current flow through this specific type of DNA.


Asunto(s)
ADN Forma B/química , Fulerenos/química , Conductividad Eléctrica , Modelos Químicos , Nanocables/química , Conformación de Ácido Nucleico
4.
Nano Lett ; 16(5): 3063-70, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27074132

RESUMEN

Membranes and their size-selective filtering properties are universal in nature and their behavior is exploited to design artificial membranes suited for, e.g., molecule or nanoparticle filtering and separation. Exploring and understanding penetration and transmission mechanisms of nanoparticles in thin-film systems may provide new opportunities for size selective deposition or embedding of the nanoparticles. Here, we demonstrate an unexpected finding that the sieving of metal nanoparticles through atomically thin nonporous alkali halide films on a metal support is size dependent and that this sieving effect can be tuned via the film thickness. Specifically, relying on scanning tunneling microscopy and spectroscopy techniques, combined with density functional theory calculations, we find that defect-free NaCl films on a Au(111) support act as size-dependent membranes for deposited Au nanoclusters. The observed sieving ability is found to originate from a driving force toward the metal support and from the dynamics of both the nanoparticles and the alkali halide films.

5.
Nanotechnology ; 27(36): 365702, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479275

RESUMEN

Atomic-level substitutional doping can significantly tune the electronic properties of graphene. Using low-temperature scanning tunneling microscopy and spectroscopy, the atomic-scale crystalline structure of graphene grown on polycrystalline Cu, the distribution of nitrogen dopants and their effect on the electronic properties of graphene were investigated. Both the graphene sheet growth and nitrogen doping were performed using microwave plasma-enhanced chemical vapor deposition. The results indicated that the nitrogen dopants preferentially sit at the grain boundaries of the graphene sheets and confirmed that plasma treatment is a potential method to incorporate foreign atoms into the graphene lattice to tailor the graphene's electronic properties.

6.
Phys Rev Lett ; 113(10): 106102, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238370

RESUMEN

We report on in situ chemical reactions between an organic trimesic acid (TMA) ligand and a Co atom center. By varying the substrate temperature, we are able to explore the Co-TMA interactions and create novel magnetic complexes that preserve the chemical structure of the ligands. Using scanning tunneling microscopy and spectroscopy combined with density functional theory calculations, we elucidate the structure and the properties of the newly synthesized complex at atomic or molecular size level. Hybridization between the atomic orbitals of the Co and the π orbitals of the ligand results in a delocalized spin distribution onto the TMA. The here demonstrated possibility to conveniently magnetize such versatile molecules opens up new potential applications for TMAs in molecular spintronics.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38683636

RESUMEN

Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V2O3) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin V2O3 films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement. By electrical and optical measurements, we demonstrate a dimensional confinement-induced metal-insulator transition in these ultrathin films. We shed light on the Mott-Hubbard nature of this transition, revealing a vanishing quasiparticle weight as demonstrated by photoemission spectroscopy. Furthermore, we prove that dimensional confinement acts as an effective out-of-plane stress. This highlights the structural component of correlated oxides in a confined architecture, while opening an avenue to control both in-plane and out-of-plane lattice components by epitaxial strain and confinement, respectively.

8.
Langmuir ; 29(37): 11593-9, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23944842

RESUMEN

Nowadays molecular nanoporous networks have numerous uses in surface nanopatterning applications and in studies of host-guest interactions. Trimesic acid (TMA), a benzene derivative with three carboxylic groups, is a marvelous building block for forming 2D H-bonded porous networks. Here, we report a low-temperature study of the nanoporous "chicken-wire" superstructure formed by TMA molecules adsorbed on a Au(111) surface. Distinct preferential orientations of the porous networks on Au(111) lead to the formation of peculiar TMA polymorphs that are stabilized only at the boundary between rotational molecular domains. Scanning tunneling microscopy (STM) and spectroscopy are used to investigate the electronic properties of both the molecular building blocks and the pores. Sub-molecular-resolution imaging and spatially resolved electronic spectroscopy reveal a remarkable change in the appearance of the molecules in the STM images at energies in the range of the lowest unoccupied molecular orbital, accompanied by highly extended molecular wave functions into the pores. The electronic structure of the pores reflects a weak confinement of surface electrons by the TMA network. Our experimental observations are corroborated by density-functional-theory-based calculations of the nanoporous structure adsorbed on Au(111).

9.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144922

RESUMEN

Integration of graphene into various electronic devices requires an ultrathin oxide layer on top of graphene. However, direct thin film growth of oxide on graphene is not evident because of the low surface energy of graphene promoting three-dimensional island growth. In this study, we demonstrate the growth of ultrathin vanadium oxide films on a highly oriented pyrolytic graphite (HOPG) surface, which mimics the graphene surface, using (oxygen-assisted) molecular beam epitaxy, followed by a post-annealing. The structural properties, surface morphology, and chemical composition of the films have been systematically investigated by in situ reflection high-energy electron diffraction during the growth and by ex situ techniques, such as atomic force microscopy, scanning tunneling microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). Crystalline monolayer vanadium oxide can be achieved on HOPG by systematically tuning the deposition time of V atoms and by subsequent annealing at 450 °C in controlled atmospheres. Increasing the partial pressure of O2 during the deposition seems to decrease the mobility of V atoms on the graphitic surface of HOPG and promote the formation of a two-dimensional (2D) vanadium oxide. The obtained oxide layers are found to be polycrystalline with an average grain size of 15 nm and to have a mixed-valence state with mainly V5+ and V4+. Moreover, XPS valence band measurements indicate that the vanadium oxide is insulating. These results demonstrate that a 2D insulating vanadium oxide can be grown directly on HOPG and suggest vanadium oxide as a promising candidate for graphene/oxide heterostructures.

10.
J Phys Condens Matter ; 34(47)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36130609

RESUMEN

Individual magnetic transition metal dopants in a solid host usually exhibit relatively small spin excitation energies of a few meV. Using scanning tunneling microscopy and inelastic electron tunneling spectroscopy (IETS) techniques, we have observed a high spin excitation energy around 36 meV for an individual Co substitutional dopant in ultrathin NaCl films. In contrast, the Cr dopant in the NaCl film shows much lower spin excitation energy around 2.5 meV. Electronic multiplet calculations combined with first-principles calculations confirm the spin excitation induced IETS, and quantitatively reveal the out-of-plane magnetic anisotropies for both Co and Cr. They also allow reproducing the experimentally observed redshift in the spin excitations of Co dimers and ascribe it to a charge and geometry redistribution.

11.
ACS Nano ; 14(10): 13172-13179, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33063986

RESUMEN

We successfully identified native point defects that occur in Bi2Te3 crystals by combining high-resolution bias-dependent scanning tunneling microscopy and density functional theory based calculations. As-grown Bi2Te3 crystals contain vacancies, antisites, and interstitial defects that may result in bulk conductivity and therefore may change the insulating bulk character. Here, we demonstrate the interplay between the growth conditions and the density of different types of native near-surface defects. In particular, scanning tunneling spectroscopy reveals the dependence on not only the local atomic environment but also on the growth kinetics and the resulting sample doping from n-type toward intrinsic crystals with the Fermi level positioned inside the energy gap. Our results establish a bias-dependent STM signature of the Bi2Te3 native defects and shed light on the link between the native defects and the electronic properties of Bi2Te3, which is relevant for the synthesis of topological insulator materials and the related functional properties.

12.
Sci Adv ; 6(1): eaay4289, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922009

RESUMEN

The free-standing Au20 cluster has a unique tetrahedral shape and a large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of around 1.8 electron volts. The "magic" Au20 has been intensively used as a model system for understanding the catalytic and optical properties of gold nanoclusters. However, direct real-space ground-state characterization at the atomic scale is still lacking, and obtaining fundamental information about the corresponding structural, electronic, and dynamical properties, is challenging. Here, using cluster-beam deposition and low-temperature scanning tunneling microscopy, atom-resolved topographic images and electronic spectra of supported Au20 clusters are obtained. We demonstrate that individual size-selected Au20 on ultrathin NaCl films maintains its pyramidal structure and large HOMO-LUMO gap. At higher cluster coverages, we find sintering of the clusters via Smoluchowski ripening to Au20n agglomerates. The evolution of the electron density of states deduced from the spectra reveals gap reduction with increasing agglomerate size.

13.
J Phys Chem Lett ; 10(14): 3998-4002, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31260314

RESUMEN

Scanning tunneling microscopy and spectroscopy experiments under ultrahigh vacuum and low-temperature conditions have been performed on water-intercalated graphene on Pt(111). We find that the confined water layer, with a thickness around 0.35 nm, induces a strong hole doping in graphene, i.e., the Dirac point locates at round 0.64 eV above the Fermi level. This can be explained by the presence of a single "puckered bilayer" of ice-Ih, which has not been experimentally found on bare Pt(111), being confined in between graphene and Pt(111) surface. Moreover, the water intercalation makes graphene highly decoupled from the substrate, allowing us to reveal the intrinsic graphene phonons and double Rydberg series of even and odd symmetry image-potential states. Our work not only demonstrates that the electronic properties of graphene can be tuned by the confined water layer between graphene and the substrate, but also provides a generally applicable method to study the intrinsic properties of graphene as well as of other supported two-dimensional materials.

14.
J Phys Condens Matter ; 29(12): 125001, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28177927

RESUMEN

We report on the adsorption of Te adatoms on Au(1 1 1), which are identified and investigated relying on scanning tunnelling microscopy, Auger electron spectroscopy, and density functional theory. The Te adatoms lift the 23 × âˆš3 surface reconstruction of the Au(1 1 1) support and their organization is similar to that of previously reported chalcogen adatoms on Au(1 1 1), which are also known to lift the herringbone reconstruction and can adopt a (√3 × âˆš3)R30° structure. The adatoms show strong interaction with the Au(1 1 1) surface, resulting in scattering and confinement of the Au surface state (SS) electrons near the Fermi level. More remarkably, scanning tunnelling spectroscopy reveals the existence of an electronic resonance at high voltages well above the Fermi level. This resonance can be interpreted as a bound state that is split off from the bottom of the Au(1 1 1) bulk conduction band. A similar split-off state may exist for other types of adatoms on metallic surfaces that exhibit a surface band gap.

15.
ACS Appl Mater Interfaces ; 9(42): 37484-37492, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28972738

RESUMEN

The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene. It is understood that interfacial water is essential for an electrochemistry-based graphene delamination from a Pt surface. Additionally, the lamination of graphene to a target wafer is hindered by intercalation effects, which can even result in graphene delamination from the target wafer. For circumvention of these issues, a direct, support-free graphene transfer process is demonstrated, which relies on the formation of interfacial water between graphene and its growth surface, while avoiding water intercalation between graphene and the target wafer by using hydrophobic silane layers on the target wafer. The proposed direct graphene transfer also avoids polymer contamination (no temporary support layer) and eliminates the need for etching of the catalyst metal. Therefore, recycling of the growth template becomes feasible. The proposed transfer process might even open the door for the suggested atomic-scale interlocking-toy-brick-based stacking of different 2D materials, which will enable a more reliable fabrication of van der Waals heterostructure-based devices and applications.

16.
Chem Commun (Camb) ; 52(76): 11359-11362, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27709149

RESUMEN

We probe the electron-phonon coupling for in situ engineered porphyrin-based magnetic molecular layers supported on weakly reactive surfaces. Using high-resolution scanning tunneling microscopy and spectroscopy at 4.5 K we show that the electronic and magnetic properties of the engineered molecules are the result of interplay between many-body spin-flip excitations and electron-phonon interactions.

17.
Nat Commun ; 7: 14001, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008910

RESUMEN

Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defect, that is, stacking fault tetrahedra (SFTs), exhibits pronounced quantized electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well-decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.

18.
Sci Rep ; 6: 20278, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26854069

RESUMEN

We report on the observation of complex superlattices at the surface of the topological insulator Bi2Te3. Scanning tunneling microscopy reveals the existence of two different periodic structures in addition to the Bi2Te3 atomic lattice, which is found to strongly affect the local electronic structure. These three different periodicities are interpreted to result from a single small in-plane rotation of the topmost quintuple layer only. Density functional theory calculations support the observed increase in the DOS near the Fermi level, and exclude the possibility that strain is at the origin of the observed Moiré pattern. Exploration of Moiré superlattices formed by the quintuple layers of topological insulators holds great potential for further tuning of the properties of topological insulators.

19.
ACS Nano ; 10(9): 8778-87, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27584869

RESUMEN

Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a "second" cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.

20.
Nanoscale ; 7(6): 2366-73, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25563389

RESUMEN

Scanning tunneling microscopy (STM) experiments combined with density functional theory (DFT) calculations reveal that deposited Cr atoms replace either Na or Cl ions, forming substituting dopants in ultrathin NaCl/Au(111) films. The Cr dopants exchange electrons with the support thus changing the electronic properties of the film and in particular the work function. The Cr atoms spontaneously aggregate near the edges of the bilayer (2L) NaCl islands, forming a new phase in the insulator with a remarkably dense population of Cr dopants. The spectra of differential conductance yield evidence that, compared to the undoped or Cr-poor 2L NaCl films on Au(111), the Cr-rich region shows different interface states, shifted image-potential states, and a reduced work function. This demonstrates the potential of doping ultrathin films to modify their adsorption properties in a desired manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA