Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Immunol ; 210(11): 1804-1814, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074207

RESUMEN

Somatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency. In this study, we test the hypothesis that APE2 promotes and APE1 suppresses SHM. We show how APE1/APE2 expression changes in primary murine spleen B cells during activation, impacting both SHM and class-switch recombination (CSR). High levels of both APE1 and APE2 early after activation promote CSR. However, after 2 d, APE1 levels decrease steadily with each cell division, even with repeated stimulation, whereas APE2 levels increase with each stimulation. When GC-level APE1/APE2 expression was engineered by reducing APE1 genetically (apex1+/-) and overexpressing APE2, bona fide activation-induced cytidine deaminase-dependent VDJH4 intron SHM became detectable in primary B cell cultures. The C terminus of APE2 that interacts with proliferating cell nuclear Ag promotes SHM and CSR, although its ATR-Chk1-interacting Zf-GRF domain is not required. However, APE2 does not increase mutations unless APE1 is reduced. Although APE1 promotes CSR, it suppresses SHM, suggesting that downregulation of APE1 in the GC is required for SHM. Genome-wide expression data compare GC and cultured B cells and new models depict how APE1 and APE2 expression and protein interactions change during B cell activation and affect the balance between accurate and error-prone repair during CSR and SHM.


Asunto(s)
Linfocitos B , Reparación del ADN , Animales , Ratones , Linfocitos B/metabolismo , Técnicas de Cultivo de Célula , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Mutación , Hipermutación Somática de Inmunoglobulina
2.
J Immunol ; 197(7): 2918-29, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27559048

RESUMEN

The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Células Precursoras de Linfocitos B/metabolismo , Transducción de Señal , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Nucleares/metabolismo
3.
PLoS Genet ; 11(8): e1005438, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26263206

RESUMEN

Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citidina Desaminasa/fisiología , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Inmunoprecipitación de Cromatina , ADN Intergénico/genética , Proteínas de Unión al ADN , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Proteica , Bazo/citología , Bazo/enzimología , Secuencias Repetidas en Tándem
4.
Proc Natl Acad Sci U S A ; 111(25): 9217-22, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927551

RESUMEN

Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase ß. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B cells, is expressed at very low levels in mouse germinal center B cells where SHM occurs, and APE1 haploinsufficiency has very little effect on SHM. In contrast, the less efficient homolog, APE2, is highly expressed and contributes not only to the frequency of mutations, but also to the generation of mutations at A:T base pair (bp), insertions, and deletions. In the absence of both UNG and APE2, mutations at A:T bp are dramatically reduced. Single-strand breaks generated by APE2 could provide entry points for exonuclease recruited by the mismatch repair proteins Msh2-Msh6, and the known association of APE2 with proliferating cell nuclear antigen could recruit translesion polymerases to create mutations at AID-induced lesions and also at A:T bp. Our data provide new insight into error-prone repair of AID-induced lesions, which we propose is facilitated by down-regulation of APE1 and up-regulation of APE2 expression in germinal center B cells.


Asunto(s)
Linfocitos B/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/biosíntesis , Endonucleasas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Centro Germinal/metabolismo , Mutación , Hipermutación Somática de Inmunoglobulina/fisiología , Animales , Linfocitos B/citología , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Centro Germinal/citología , Ratones , Ratones Noqueados , Enzimas Multifuncionales , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo
5.
J Immunol ; 193(11): 5370-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25411432

RESUMEN

IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.


Asunto(s)
Linfocitos B/fisiología , Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Reparación del ADN , Humanos , Activación de Linfocitos
6.
J Immunol ; 192(10): 4887-96, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24729610

RESUMEN

Activation-induced cytidine deaminase (AID) initiates Ab class-switch recombination (CSR) in activated B cells resulting in exchanging the IgH C region and improved Ab effector function. During CSR, AID instigates DNA double-strand break (DSB) formation in switch (S) regions located upstream of C region genes. DSBs are necessary for CSR, but improper regulation of DSBs can lead to chromosomal translocations that can result in B cell lymphoma. The protein kinase ataxia telangiectasia mutated (ATM) is an important proximal regulator of the DNA damage response (DDR), and translocations involving S regions are increased in its absence. ATM phosphorylates H2AX, which recruits other DNA damage response (DDR) proteins, including mediator of DNA damage checkpoint 1 (Mdc1) and p53 binding protein 1 (53BP1), to sites of DNA damage. As these DDR proteins all function to promote repair and recombination of DSBs during CSR, we examined whether mouse splenic B cells deficient in these proteins would show alterations in S region DSBs when undergoing CSR. We find that in atm(-/-) cells Sµ DSBs are increased, whereas DSBs in downstream Sγ regions are decreased. We also find that mutations in the unrearranged Sγ3 segment are reduced in atm(-/-) cells. Our data suggest that ATM increases AID targeting and activity at downstream acceptor S regions during CSR and that in atm(-/-) cells Sµ DSBs accumulate as they lack a recombination partner.


Asunto(s)
Citidina Desaminasa/inmunología , Reordenamiento Génico de Linfocito B/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/inmunología , Citidina Desaminasa/genética , Daño del ADN/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Reordenamiento Génico de Linfocito B/genética , Histonas/genética , Histonas/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Ratones Noqueados , Fosforilación/genética , Fosforilación/inmunología , Proteína 1 de Unión al Supresor Tumoral P53
7.
J Immunol ; 193(3): 1440-50, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973444

RESUMEN

Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The AID C terminus is required for CSR, but not for S-region DNA double-strand breaks (DSBs) during CSR, and it is not required for SHM. AID lacking the C terminus (ΔAID) is a dominant negative (DN) mutant, because human patients heterozygous for this mutant fail to undergo CSR. In agreement, we show that ΔAID is a DN mutant when expressed in AID-sufficient mouse splenic B cells. To have DN function, ΔAID must have deaminase activity, suggesting that its ability to induce DSBs is important for the DN function. Supporting this hypothesis, Msh2-Msh6 have been shown to contribute to DSB formation in S regions, and we find in this study that Msh2 is required for the DN activity, because ΔAID is not a DN mutant in msh2(-/-) cells. Our results suggest that the DNA DSBs induced by ΔAID are unable to participate in CSR and might interfere with the ability of full-length AID to participate in CSR. We propose that ΔAID is impaired in its ability to recruit nonhomologous end joining repair factors, resulting in accumulation of DSBs that undergo aberrant resection. Supporting this hypothesis, we find that the S-S junctions induced by ΔAID have longer microhomologies than do those induced by full-length AID. In addition, our data suggest that AID binds Sµ regions in vivo as a monomer.


Asunto(s)
Citidina Desaminasa/fisiología , Reparación de la Incompatibilidad de ADN/inmunología , Reordenamiento Génico/inmunología , Animales , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Eliminación de Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fragmentos de Péptidos/genética , Cultivo Primario de Células
8.
J Immunol ; 193(2): 931-9, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24935922

RESUMEN

Activation-induced cytidine deaminase (AID) initiates a process generating DNA mutations and breaks in germinal center (GC) B cells that are necessary for somatic hypermutation and class-switch recombination. GC B cells can "tolerate" DNA damage while rapidly proliferating because of partial suppression of the DNA damage response by BCL6. In this study, we develop a model to study the response of mouse GC B cells to endogenous DNA damage. We show that the base excision repair protein apurinic/apyrimidinic endonuclease (APE) 2 protects activated B cells from oxidative damage in vitro. APE2-deficient mice have smaller GCs and reduced Ab responses compared with wild-type mice. DNA double-strand breaks are increased in the rapidly dividing GC centroblasts of APE2-deficient mice, which activate a p53-independent cell cycle checkpoint and a p53-dependent apoptotic response. Proliferative and/or oxidative damage and AID-dependent damage are additive stresses that correlate inversely with GC size in wild-type, AID-, and APE2-deficient mice. Excessive double-strand breaks lead to decreased expression of BCL6, which would enable DNA repair pathways but limit GC cell numbers. These results describe a nonredundant role for APE2 in the protection of GC cells from AID-independent damage, and although GC cells uniquely tolerate DNA damage, we find that the DNA damage response can still regulate GC size through pathways that involve p53 and BCL6.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/inmunología , Daño del ADN , Endonucleasas/inmunología , Centro Germinal/inmunología , Animales , Apoptosis/genética , Apoptosis/inmunología , Linfocitos B/metabolismo , Ciclo Celular/genética , Ciclo Celular/inmunología , Proliferación Celular , Células Cultivadas , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Roturas del ADN de Doble Cadena , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Endonucleasas/deficiencia , Endonucleasas/genética , Citometría de Flujo , Centro Germinal/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Enzimas Multifuncionales , Estrés Oxidativo/inmunología , Proteínas Proto-Oncogénicas c-bcl-6 , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Hipermutación Somática de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/inmunología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología
9.
J Immunol ; 186(4): 1943-50, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21228350

RESUMEN

B cell development involves rapid cellular proliferation, gene rearrangements, selection, and differentiation, and it provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair pathway in lymphocyte development has been lacking primarily owing to the essential nature of this repair pathway. However, mice deficient for the base excision repair enzyme, apurinic/apyrimidinic endonuclease 2 (APE2) protein develop relatively normally, but they display defects in lymphopoiesis. In this study, we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J recombination and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell cocultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased 2 wk after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1.


Asunto(s)
Subgrupos de Linfocitos B/enzimología , Subgrupos de Linfocitos B/inmunología , Endonucleasas/fisiología , Fluorouracilo/administración & dosificación , Células Madre Hematopoyéticas/enzimología , Subgrupos Linfocitarios/enzimología , Linfopoyesis/inmunología , Animales , Subgrupos de Linfocitos B/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Daño del ADN/inmunología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Reparación del ADN/inmunología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Endonucleasas/deficiencia , Endonucleasas/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Depleción Linfocítica , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Linfopoyesis/efectos de los fármacos , Linfopoyesis/genética , Ratones , Ratones Noqueados , Enzimas Multifuncionales , Mielopoyesis/efectos de los fármacos , Mielopoyesis/genética , Mielopoyesis/inmunología , Proteína p53 Supresora de Tumor/fisiología
10.
J Immunol ; 187(5): 2464-75, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21804017

RESUMEN

Activation-induced cytidine deaminase (AID) is induced in B cells during an immune response and is essential for both class-switch recombination (CSR) and somatic hypermutation of Ab genes. The C-terminal 10 aa of AID are required for CSR but not for somatic hypermutation, although their role in CSR is unknown. Using retroviral transduction into mouse splenic B cells, we show that the C terminus is not required for switch (S) region double-strand breaks (DSBs) and therefore functions downstream of DSBs. Using chromatin immunoprecipitation, we show that AID binds cooperatively with UNG and the mismatch repair proteins Msh2-Msh6 to Ig Sµ and Sγ3 regions, and this depends on the C terminus and the deaminase activity of AID. We also show that mismatch repair does not contribute to the efficiency of CSR in the absence of the AID C terminus. Although it has been demonstrated that both UNG and Msh2-Msh6 are important for introduction of S region DSBs, our data suggest that the ability of AID to recruit these proteins is important for DSB resolution, perhaps by directing the S region DSBs toward accurate and efficient CSR via nonhomologous end joining.


Asunto(s)
Citidina Desaminasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina/fisiología , Región de Cambio de la Inmunoglobulina/fisiología , Proteína 2 Homóloga a MutS/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Separación Celular , Inmunoprecipitación de Cromatina , Citidina Desaminasa/química , Citometría de Flujo , Inmunoglobulina G , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Nucleic Acids Res ; 39(8): 3156-65, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21172930

RESUMEN

DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex(+/-) mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Alquilantes/farmacología , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , ADN Polimerasa beta/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/metabolismo
13.
J Immunol ; 184(11): 6177-87, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20483782

RESUMEN

Ig class switch recombination (CSR) occurs in activated mature B cells, and causes an exchange of the IgM isotype for IgG, IgE, or IgA isotypes, which increases the effectiveness of the humoral immune response. DNA ds breaks in recombining switch (S) regions, where CSR occurs, are required for recombination. Activation-induced cytidine deaminase initiates DNA ds break formation by deamination of cytosines in S regions. This reaction requires reactive oxygen species (ROS) intermediates, such as hydroxyl radicals. In this study we show that the ROS scavenger N-acetylcysteine inhibits CSR. We also demonstrate that IFN-gamma treatment, which is used to induce IgG2a switching, increases intracellular ROS levels, and activates p53 in switching B cells, and show that p53 inhibits IgG2a class switching through its antioxidant-regulating function. Finally, we show that p53 inhibits DNA breaks and mutations in S regions in B cells undergoing CSR, suggesting that p53 inhibits the activity of activation-induced cytidine deaminase.


Asunto(s)
Antioxidantes/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulina G/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Western Blotting , Separación Celular , Citidina Desaminasa/metabolismo , Roturas del ADN de Doble Cadena , Citometría de Flujo , Inmunoglobulina G/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/inmunología
14.
J Exp Med ; 201(12): 1885-90, 2005 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-15955838

RESUMEN

The mechanisms that target class switch recombination (CSR) to antibody gene switch (S) regions are unknown. Analyses of switch site locations in wild-type mice and in mice that lack the Smu tandem repeats show shifts indicating that a 4-5-kb DNA domain (bounded upstream by the Imu promoter) is accessible for switching independent of Smu sequences. This CSR-accessible domain is reminiscent of the promoter-defined domains that target somatic hypermutation. Within the 4-5-kb CSR domain, the targeting of S site locations also depends on the Msh2 mismatch repair protein because Msh2-deficient mice show an increased focus of sites to the Smu tandem repeat region. We propose that Msh2 affects S site location because sequences with few activation-induced cytidine deaminase targets generate mostly switch DNA cleavages that require Msh2-directed processing to allow CSR joining.


Asunto(s)
Diversidad de Anticuerpos/genética , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina/inmunología , Región de Cambio de la Inmunoglobulina/genética , Modelos Genéticos , Proteínas Proto-Oncogénicas/metabolismo , Animales , Cartilla de ADN , Proteínas de Unión al ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Ratones , Ratones Noqueados , Proteína 2 Homóloga a MutS , Reacción en Cadena de la Polimerasa/métodos , Proteínas Proto-Oncogénicas/genética , Secuencias Repetidas en Tándem/genética
15.
J Exp Med ; 202(4): 561-8, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16103411

RESUMEN

Class switch recombination (CSR) occurs by an intrachromosomal deletion whereby the IgM constant region gene (Cmu) is replaced by a downstream constant region gene. This unique recombination event involves formation of double-strand breaks (DSBs) in immunoglobulin switch (S) regions, and requires activation-induced cytidine deaminase (AID), which converts cytosines to uracils. Repair of the uracils is proposed to lead to DNA breaks required for recombination. Uracil DNA glycosylase (UNG) is required for most CSR activity although its role is disputed. Here we use ligation-mediated PCR to detect DSBs in S regions in splenic B cells undergoing CSR. We find that the kinetics of DSB induction corresponds with AID expression, and that DSBs are AID- and UNG-dependent and occur preferentially at G:C basepairs in WRC/GYW AID hotspots. Our results indicate that AID attacks cytosines on both DNA strands, and staggered breaks are processed to blunt DSBs at the initiating ss break sites. We propose a model to explain the types of end-processing events observed.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/genética , ADN Glicosilasas/genética , Reordenamiento Génico de Linfocito B/genética , Cadenas mu de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/genética , Animales , Linfocitos B/citología , Citidina Desaminasa/inmunología , ADN/genética , ADN/inmunología , ADN Glicosilasas/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Reordenamiento Génico de Linfocito B/inmunología , Regiones Constantes de Inmunoglobulina/genética , Regiones Constantes de Inmunoglobulina/inmunología , Cadenas mu de Inmunoglobulina/inmunología , Ratones , Ratones Mutantes , Recombinación Genética/genética , Recombinación Genética/inmunología , Hipermutación Somática de Inmunoglobulina/inmunología , Bazo/citología , Bazo/inmunología , Uracil-ADN Glicosidasa
16.
J Immunol ; 183(2): 1222-8, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19553545

RESUMEN

The Msh2 mismatch repair (MMR) protein is critical for class switch recombination (CSR) events that occur in mice that lack the Smu tandem repeat (SmuTR) region (SmuTR(-/-) mice). The pattern of microhomology among switch junction sites in Msh2-deficient mice is also dependent on the presence or absence of SmuTR sequences. It is not known whether these CSR effects reflect an individual function of Msh2 or the function of Msh2 within the MMR machinery. In the absence of the SmuTR sequences, Msh2 deficiency nearly ablates CSR. We now show that Mlh1 or Exo1 deficiencies also eliminate CSR in the absence of the SmuTR. Furthermore, in SmuTR(-/-) mice, deficiencies of Mlh1 or Exo1 result in increased switch junction microhomology as has also been seen with Msh2 deficiency. These results are consistent with a CSR model in which the MMR machinery is important in processing DNA nicks to produce double-stranded breaks, particularly in sequences where nicks are infrequent. We propose that double-stranded break paucity in MMR-deficient mice leads to increased use of an alternative joining pathway where microhomologies are important for CSR break ligation. Interestingly, when the SmuTR region is present, deficiency of Msh2 does not lead to the increased microhomology seen with Mlh1 or Exo1 deficiencies, suggesting that Msh2 might have an additional function in CSR. It is also possible that the inability to initiate MMR in the absence of Msh2 results in CSR junctions with less microhomology than joinings that occur when MMR is initiated but then proceeds abnormally due to Mlh1 or Exo1 deficiencies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Exodesoxirribonucleasas/deficiencia , Cambio de Clase de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina , Proteína 2 Homóloga a MutS/deficiencia , Proteínas Nucleares/deficiencia , Secuencias Repetidas en Tándem , Animales , Linfocitos B/inmunología , Células Cultivadas , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , Región de Cambio de la Inmunoglobulina/genética , Ratones , Ratones Noqueados , Homólogo 1 de la Proteína MutL
17.
J Exp Med ; 195(3): 367-73, 2002 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-11828012

RESUMEN

B cells from mice deficient in mismatch repair (MMR) proteins show decreased ability to undergo class switch recombination in vitro and in vivo. The deficit is not accompanied by any reduction in cell viability or alterations in the cell cycle in B cells cultured in vitro. To assess the role of MMR in switching we examined the nucleotide sequences of Smicro-Sgamma3 recombination junctions in splenic B cells induced in culture to switch to IgG3. The data demonstrate clear differences in the sequences of switch junctions in wild-type B cells in comparison with Msh2-, Mlh1-, and Pms2-deficient B cells. Sequences of switch junctions from Msh2-deficient cells showed decreased lengths of microhomology between Smicro and Sgamma3 relative to junctions from wild-type cells and an increase in insertions, i.e., nucleotides which do not appear to be derived from either the Smicro or Sgamma3 parental sequence. By contrast, 23% of junctions from Mlh1- and Pms2-deficient cells occurred at unusually long stretches of microhomology. The data indicate that MMR proteins are directly involved in class switching and that the role of Msh2 differs from that of Mlh1 and Pms2.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/inmunología , Disparidad de Par Base , Enzimas Reparadoras del ADN , Reparación del ADN/genética , Reparación del ADN/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Cambio de Clase de Inmunoglobulina , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/deficiencia , Animales , Linfocitos B/inmunología , Secuencia de Bases , Proteínas Portadoras , ADN/genética , Proteínas de Unión al ADN/deficiencia , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Datos de Secuencia Molecular , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS , Proteínas de Neoplasias/deficiencia , Proteínas Nucleares , Proteínas Proto-Oncogénicas/deficiencia , Recombinación Genética , Homología de Secuencia de Ácido Nucleico
18.
J Exp Med ; 197(10): 1377-83, 2003 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-12743174

RESUMEN

Mismatch repair proteins participate in antibody class switch recombination, although their roles are unknown. Previous nucleotide sequence analyses of switch recombination junctions indicated that the roles of Msh2 and the MutL homologues, Mlh1 and Pms2, differ. We now asked if Msh2 and Mlh1 function in the same pathway during switch recombination. Splenic B cells from mice deficient in both these proteins were induced to undergo switching in culture. The frequency of switching is reduced, similarly to that of B cells singly deficient in Msh2 or Mlh1. However, the nucleotide sequences of the Smu-Sgamma3 junctions resemble junctions from Mlh1- but not from Msh2-deficient cells, suggesting Mlh1 functions either independently of or before Msh2. The substitution mutations within S regions that are known to accompany switch recombination are increased in Msh2- and Mlh1 single-deficient cells and further increased in the double-deficient cells, again suggesting these proteins function independently in class switch recombination. The finding that MMR functions to reduce mutations in switch regions is unexpected since MMR proteins have been shown to contribute to somatic hypermutation of antibody variable region genes.


Asunto(s)
Enzimas Reparadoras del ADN , Cambio de Clase de Inmunoglobulina/genética , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas/fisiología , Recombinación Genética , Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/fisiología , Animales , Disparidad de Par Base , Secuencia de Bases , Proteínas Portadoras , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Ratones , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Datos de Secuencia Molecular , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS , Proteínas Nucleares
19.
J Exp Med ; 200(3): 321-30, 2004 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-15280420

RESUMEN

The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3' single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abilities that might be useful for antibody CSR. We tested whether ERCC1 is involved in CSR and found that Ercc1(-)(/)(-) splenic B cells show moderately reduced CSR in vitro, demonstrating that ERCC1-XPF participates in, but is not required for, CSR. To investigate the role of ERCC1 in CSR, the nucleotide sequences of switch (S) regions were determined. The mutation frequency in germline Smicro segments and recombined Smicro-Sgamma3 segments cloned from Ercc1(-)(/)(-) splenic B cells induced to switch in culture was identical to that of wild-type (WT) littermates. However, Ercc1(-)(/)(-) cells show increased targeting of the mutations to G:C bp in RGYW/WRCY hotspots and mutations occur at sites more distant from the S-S junctions compared with WT mice. The results indicate that ERCC1 is not epistatic with MMR and suggest that ERCC1 might be involved in processing or repair of DNA lesions in S regions during CSR.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Cambio de Clase de Inmunoglobulina , Recombinación Genética , Animales , Disparidad de Par Base , Reparación del ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Ratones , Ratones Endogámicos C57BL , Proteína 2 Homóloga a MutS , Mutación , Proteínas Proto-Oncogénicas/fisiología
20.
J Immunol ; 181(12): 8450-9, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19050263

RESUMEN

When B cells are activated after immunization or infection, they exchange the gene encoding the Ig H chain C region by class switch recombination (CSR). CSR generally occurs by an intrachromosomal deletional recombination within switch (S) region sequences. However, approximately 10% of CSR events occur between chromosome homologs (trans- or interallele CSR), suggesting that the homologous chromosomes are aligned during CSR. Because the Mut S homolog 4 (Msh4) and Msh5 bind to Holliday junctions and are required for homologous recombination during meiosis in germ cells, we hypothesized these proteins might be involved in trans-chromosomal CSR (trans-CSR). Indeed, Msh4-Msh5 has recently been suggested to have a role in CSR. However, we find a large variety of alternative splice variants of Msh5 mRNA in splenic B cells rather than the full-length form found in testis. Most of these mRNAs are unlikely to be stable, suggesting that Msh5 might not be functional. Furthermore, we find that msh5 nullizygous B cells undergo CSR normally, have unaltered levels of trans-CSR, normal levels of DNA breaks in the Smu region, and normal S-S junctions. We also show that the S-S junctions from cis- and trans-CSR events have similar lengths of junctional microhomology, suggesting trans-CSR occurs by nonhomologous end joining as does intrachromosome (cis)-CSR. From these data, we conclude that Msh5 does not participate in CSR.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Cambio de Clase de Inmunoglobulina/genética , Recombinación Genética/inmunología , Empalme Alternativo/genética , Empalme Alternativo/inmunología , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/inmunología , Animales , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , ARN/biosíntesis , Homología de Secuencia de Ácido Nucleico , Bazo/citología , Bazo/inmunología , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA