Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurosurg Rev ; 47(1): 114, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480549

RESUMEN

Supplementary motor area syndrome (SMAS) represents a common neurosurgical sequela. The incidence and time frame of its occurrence have yet to be characterized after surgery for brain tumors. We examined patients suffering from a brain tumor preoperatively, postoperatively, and during follow-up examinations after three months, including fine motor skills testing and transcranial magnetic stimulation (TMS). 13 patients suffering from a tumor in the dorsal part of the superior frontal gyrus underwent preoperative, early postoperative, and 3-month follow-up testing of fine motor skills using the Jebsen-Taylor Hand Function Test (JHFT) and the Nine-Hole Peg Test (NHPT) consisting of 8 subtests for both upper extremities. They completed TMS for cortical motor function mapping. Test completion times (TCTs) were recorded and compared. No patient suffered from neurological deficits before surgery. On postoperative day one, we detected motor deficits in two patients, which remained clinically stable at a 3-month follow-up. Except for page-turning, every subtest indicated a significant worsening of function, reflected by longer TCTs (p < 0.05) in the postoperative examinations for the contralateral upper extremity (contralateral to the tumor manifestation). At 3-month follow-up examinations for the contralateral upper extremity, each subtest indicated significant worsening compared to the preoperative status despite improvement to the immediate postoperative level. We also detected significantly longer TCTs (p < 0.05) postoperatively in the ipsilateral upper extremity. This study suggests a long-term worsening of fine motor skills even three months after SMA tumor resection, indicating the necessity of targeted physical therapy for these patients.


Asunto(s)
Neoplasias Encefálicas , Corteza Motora , Humanos , Corteza Motora/cirugía , Destreza Motora , Neoplasias Encefálicas/etiología , Estimulación Magnética Transcraneal , Procedimientos Neuroquirúrgicos/efectos adversos
2.
Cephalalgia ; 43(2): 3331024221128278, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36751858

RESUMEN

BACKGROUND: Migraine is a highly prevalent primary headache disorder. Despite a high burden of disease, key disease mechanisms are not entirely understood. Functional magnetic resonance imaging is an imaging method using the blood-oxygen-level-dependent signal, which has been increasingly used in migraine research over recent years. This systematic review summarizes recent findings employing functional magnetic resonance imaging for the investigation of migraine. METHODS: We conducted a systematic search and selection of functional magnetic resonance imaging applications in migraine from April 2014 to December 2021 (PubMed and references of identified articles according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines). Methodological details and main findings were extracted and synthesized. RESULTS: Out of 224 articles identified, 114 were included after selection. Repeatedly emerging structures of interest included the insula, brainstem, limbic system, hypothalamus, thalamus, and functional networks. Assessment of functional brain changes in response to treatment is emerging, and machine learning has been used to investigate potential functional magnetic resonance imaging-based markers of migraine. CONCLUSIONS: A wide variety of functional magnetic resonance imaging-based metrics were found altered across the brain for heterogeneous migraine cohorts, partially correlating with clinical parameters and supporting the concept to conceive migraine as a brain state. However, a majority of findings from previous studies have not been replicated, and studies varied considerably regarding image acquisition and analyses techniques. Thus, while functional magnetic resonance imaging appears to have the potential to advance our understanding of migraine pathophysiology, replication of findings in large representative datasets and precise, standardized reporting of clinical data would likely benefit the field and further increase the value of observations.


Asunto(s)
Trastornos Migrañosos , Humanos , Encéfalo , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Hipotálamo
3.
Eur Radiol ; 33(8): 5882-5893, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36928566

RESUMEN

OBJECTIVES: T2-weighted (w) fat sat (fs) sequences, which are important in spine MRI, require a significant amount of scan time. Generative adversarial networks (GANs) can generate synthetic T2-w fs images. We evaluated the potential of synthetic T2-w fs images by comparing them to their true counterpart regarding image and fat saturation quality, and diagnostic agreement in a heterogenous, multicenter dataset. METHODS: A GAN was used to synthesize T2-w fs from T1- and non-fs T2-w. The training dataset comprised scans of 73 patients from two scanners, and the test dataset, scans of 101 patients from 38 multicenter scanners. Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured in true and synthetic T2-w fs. Two neuroradiologists graded image (5-point scale) and fat saturation quality (3-point scale). To evaluate whether the T2-w fs images are indistinguishable, a Turing test was performed by eleven neuroradiologists. Six pathologies were graded on the synthetic protocol (with synthetic T2-w fs) and the original protocol (with true T2-w fs) by the two neuroradiologists. RESULTS: aSNR and aCNR were not significantly different between the synthetic and true T2-w fs images. Subjective image quality was graded higher for synthetic T2-w fs (p = 0.023). In the Turing test, synthetic and true T2-w fs could not be distinguished from each other. The intermethod agreement between synthetic and original protocol ranged from substantial to almost perfect agreement for the evaluated pathologies. DISCUSSION: The synthetic T2-w fs might replace a physical T2-w fs. Our approach validated on a challenging, multicenter dataset is highly generalizable and allows for shorter scan protocols. KEY POINTS: • Generative adversarial networks can be used to generate synthetic T2-weighted fat sat images from T1- and non-fat sat T2-weighted images of the spine. • The synthetic T2-weighted fat sat images might replace a physically acquired T2-weighted fat sat showing a better image quality and excellent diagnostic agreement with the true T2-weighted fat images. • The present approach validated on a challenging, multicenter dataset is highly generalizable and allows for significantly shorter scan protocols.


Asunto(s)
Imagen por Resonancia Magnética , Columna Vertebral , Humanos , Columna Vertebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cintigrafía
4.
J Headache Pain ; 24(1): 84, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438700

RESUMEN

BACKGROUND: Tension-type headache (TTH) is the most prevalent primary headache disorder. Neck pain is commonly associated with primary headaches and the trigemino-cervical complex (TCC) refers to the convergence of trigeminal and cervical afferents onto neurons of the brainstem, thus conceptualizes the emergence of headache in relation to neck pain. However, no objective biomarkers exist for the myofascial involvement in primary headaches. This study aimed to investigate the involvement of the trapezius muscles in primary headache disorders by quantitative magnetic resonance imaging (MRI), and to explore associations between muscle T2 values and headache frequency and neck pain. METHODS: This cohort study prospectively enrolled fifty participants (41 females, age range 20-31 years): 16 subjects with TTH only (TTH-), 12 with mixed-type TTH plus migraine (TTH+), and 22 healthy controls (HC). The participants completed fat-suppressed T2-prepared three-dimensional turbo spin-echo MRI, a headache diary (over 30 days prior to MRI), manual palpation (two weeks before MRI), and evaluation of neck pain (on the day of MRI). The bilateral trapezius muscles were manually segmented, followed by muscle T2 extraction. Associations between muscle T2 and the presence of neck pain as well as the number of days with headache (considering the 30 days prior to imaging using the headache calendar) were analyzed using regression models (adjusting for age, sex, and body mass index). RESULTS: The TTH+ group demonstrated the highest muscle T2 values (right side: 31.4 ± 1.2 ms, left side: 31.4 ± 0.8 ms) as compared to the TTH- group or HC group (p < 0.001). Muscle T2 was significantly associated with the number of headache days (ß-coefficient: 2.04, p = 0.04) and the presence of neck pain (odds ratio: 2.26, p = 0.04). With muscle T2 as the predictor, the area under the curve for differentiating between HC and the TTH+ group was 0.82. CONCLUSIONS: Increased T2 of trapezius muscles may represent an objective imaging biomarker for myofascial involvement in primary headache disorders, which could help to improve patient phenotyping and therapy evaluation. Pathophysiologically, the increased muscle T2 values could be interpreted as a surrogate of neurogenic inflammation and peripheral sensitization within myofascial tissues.


Asunto(s)
Músculos Superficiales de la Espalda , Cefalea de Tipo Tensional , Femenino , Adulto Joven , Humanos , Adulto , Cefalea de Tipo Tensional/diagnóstico por imagen , Dolor de Cuello/diagnóstico por imagen , Estudios de Cohortes , Músculos Superficiales de la Espalda/diagnóstico por imagen , Cefalea
5.
BMC Neurosci ; 21(1): 3, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31952475

RESUMEN

BACKGROUND: It is difficult to set up a balanced higher-order full-factorial experiment that can capture multiple intricate interactions between cognitive and psycholinguistic factors underlying bilingual speech production. To capture interactions more fully in one study, we analyzed object-naming reaction times (RTs) by using mixed-effects multiple regression. METHODS: Ten healthy bilinguals (median age: 23 years, seven females) were asked to name 131 colored pictures of common objects in each of their languages. RTs were analyzed based on language status, proficiency, word choice, word frequency, word duration, initial phoneme, time series, and participant's gender. RESULTS: Among five significant interactions, new findings include a facilitating effect of a cross-language shared initial phoneme (mean RT for shared phoneme: 974 ms vs. mean RT for different phoneme: 1020 ms), which profited males less (mean profit: 10 ms) than females (mean profit: 47 ms). CONCLUSIONS: Our data support language-independent phonological activation and a gender difference in inhibitory cognitive language control. Single word production process in healthy adult bilinguals is affected by interactions among cognitive, phonological, and semantic factors.


Asunto(s)
Multilingüismo , Reconocimiento Visual de Modelos , Fonética , Desempeño Psicomotor , Tiempo de Reacción , Habla , Adulto , Femenino , Humanos , Masculino , Psicolingüística , Análisis de Regresión , Semántica , Adulto Joven
6.
J Cereb Blood Flow Metab ; : 271678X241237733, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483125

RESUMEN

Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.

7.
Rofo ; 196(1): 36-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37467779

RESUMEN

BACKGROUND: Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI)-based technique using labeled blood-water of the brain-feeding arteries as an endogenous tracer to derive information about brain perfusion. It enables the assessment of cerebral blood flow (CBF). METHOD: This review aims to provide a methodological and technical overview of ASL techniques, and to give examples of clinical use cases for various diseases affecting the central nervous system (CNS). There is a special focus on recent developments including super-selective ASL (ssASL) and time-resolved ASL-based magnetic resonance angiography (MRA) and on diseases commonly not leading to characteristic alterations on conventional structural MRI (e. g., concussion or migraine). RESULTS: ASL-derived CBF may represent a clinically relevant parameter in various pathologies such as cerebrovascular diseases, neoplasms, or neurodegenerative diseases. Furthermore, ASL has also been used to investigate CBF in mild traumatic brain injury or migraine, potentially leading to the establishment of imaging-based biomarkers. Recent advances made possible the acquisition of ssASL by selective labeling of single brain-feeding arteries, enabling spatial perfusion territory mapping dependent on blood flow of a specific preselected artery. Furthermore, ASL-based MRA has been introduced, providing time-resolved delineation of single intracranial vessels. CONCLUSION: Perfusion imaging by ASL has shown promise in various diseases of the CNS. Given that ASL does not require intravenous administration of a gadolinium-based contrast agent, it may be of particular interest for investigations in pediatric cohorts, patients with impaired kidney function, patients with relevant allergies, or patients that undergo serial MRI for clinical indications such as disease monitoring. KEY POINTS: · ASL is an MRI technique that uses labeled blood-water as an endogenous tracer for brain perfusion imaging.. · It allows the assessment of CBF without the need for administration of a gadolinium-based contrast agent.. · CBF quantification by ASL has been used in several pathologies including brain tumors or neurodegenerative diseases.. · Vessel-selective ASL methods can provide brain perfusion territory mapping in cerebrovascular diseases.. · ASL may be of particular interest in patient cohorts with caveats concerning gadolinium administration..


Asunto(s)
Trastornos Cerebrovasculares , Trastornos Migrañosos , Enfermedades Neurodegenerativas , Humanos , Niño , Medios de Contraste , Marcadores de Spin , Gadolinio , Imagen por Resonancia Magnética/métodos , Arterias , Angiografía por Resonancia Magnética/métodos , Trastornos Cerebrovasculares/diagnóstico por imagen , Agua
8.
Diagnostics (Basel) ; 13(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900118

RESUMEN

(1) Background and Purpose: In magnetic resonance imaging (MRI) of the spine, T2-weighted (T2-w) fat-saturated (fs) images improve the diagnostic assessment of pathologies. However, in the daily clinical setting, additional T2-w fs images are frequently missing due to time constraints or motion artifacts. Generative adversarial networks (GANs) can generate synthetic T2-w fs images in a clinically feasible time. Therefore, by simulating the radiological workflow with a heterogenous dataset, this study's purpose was to evaluate the diagnostic value of additional synthetic, GAN-based T2-w fs images in the clinical routine. (2) Methods: 174 patients with MRI of the spine were retrospectively identified. A GAN was trained to synthesize T2-w fs images from T1-w, and non-fs T2-w images of 73 patients scanned in our institution. Subsequently, the GAN was used to create synthetic T2-w fs images for the previously unseen 101 patients from multiple institutions. In this test dataset, the additional diagnostic value of synthetic T2-w fs images was assessed in six pathologies by two neuroradiologists. Pathologies were first graded on T1-w and non-fs T2-w images only, then synthetic T2-w fs images were added, and pathologies were graded again. Evaluation of the additional diagnostic value of the synthetic protocol was performed by calculation of Cohen's ĸ and accuracy in comparison to a ground truth (GT) grading based on real T2-w fs images, pre- or follow-up scans, other imaging modalities, and clinical information. (3) Results: The addition of the synthetic T2-w fs to the imaging protocol led to a more precise grading of abnormalities than when grading was based on T1-w and non-fs T2-w images only (mean ĸ GT versus synthetic protocol = 0.65; mean ĸ GT versus T1/T2 = 0.56; p = 0.043). (4) Conclusions: The implementation of synthetic T2-w fs images in the radiological workflow significantly improves the overall assessment of spine pathologies. Thereby, high-quality, synthetic T2-w fs images can be virtually generated by a GAN from heterogeneous, multicenter T1-w and non-fs T2-w contrasts in a clinically feasible time, which underlines the reproducibility and generalizability of our approach.

9.
J Neurosurg Pediatr ; 28(3): 287-294, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34171834

RESUMEN

OBJECTIVE: Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy. METHODS: A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses. RESULTS: Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0-17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients). CONCLUSIONS: Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.

10.
Brain Sci ; 11(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34573211

RESUMEN

Preoperative language mapping with navigated transcranial magnetic stimulation (nTMS) is currently based on the disruption of performance during object naming. The resulting cortical language maps, however, lack accuracy when compared to intraoperative mapping. The question arises whether nTMS results can be improved, when another language task is considered, involving verb retrieval in sentence context. Twenty healthy German speakers were tested with object naming and a novel action naming task during nTMS language mapping. Error rates and categories in both hemispheres were compared. Action naming showed a significantly higher error rate than object naming in both hemispheres. Error category comparison revealed that this discrepancy stems from more lexico-semantic errors during action naming, indicating lexico-semantic retrieval of the verb being more affected than noun retrieval. In an area-wise comparison, higher error rates surfaced in multiple right-hemisphere areas, but only trends in the left ventral postcentral gyrus and middle superior temporal gyrus. Hesitation errors contributed significantly to the error count, but did not dull the mapping results. Inclusion of action naming coupled with a detailed error analysis may be favorable for nTMS mapping and ultimately improve accuracy in preoperative planning. Moreover, the results stress the recruitment of both left- and right-hemispheric areas during naming.

11.
Front Hum Neurosci ; 15: 748274, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803634

RESUMEN

Visualization of functionally significant subcortical white matter fibers is needed in neurosurgical procedures in order to avoid damage to the language network during resection. In an effort to achieve this, positive cortical points revealed during preoperative language mapping with navigated transcranial magnetic stimulation (nTMS) can be employed as regions of interest (ROIs) for diffusion tensor imaging (DTI) fiber tracking. However, the effect that the use of different language tasks has on nTMS mapping and subsequent DTI-fiber tracking remains unexplored. The visualization of ventral stream tracts with an assumed lexico-semantic role may especially benefit from ROIs delivered by the lexico-semantically demanding verb task, Action Naming. In a first step, bihemispheric nTMS language mapping was administered in 18 healthy participants using the standard task Object Naming and the novel task Action Naming to trigger verbs in a small sentence context. Cortical areas in which nTMS induced language errors were identified as language-positive cortical sites. In a second step, nTMS-based DTI-fiber tracking was conducted using solely these language-positive points as ROIs. The ability of the two tasks' ROIs to visualize the dorsal tracts Arcuate Fascicle and Superior Longitudinal Fascicle, the ventral tracts Inferior Longitudinal Fascicle, Uncinate Fascicle, and Inferior Fronto-Occipital Fascicle, the speech-articulatory Cortico-Nuclear Tract, and interhemispheric commissural fibers was compared in both hemispheres. In the left hemisphere, ROIs of Action Naming led to a significantly higher fraction of overall visualized tracts, specifically in the ventral stream's Inferior Fronto-Occipital and Inferior Longitudinal Fascicle. No difference was found between tracking with Action Naming vs. Object Naming seeds for dorsal stream tracts, neither for the speech-articulatory tract nor the inter-hemispheric connections. While the two tasks appeared equally demanding for phonological-articulatory processes, ROI seeding through the task Action Naming seemed to better visualize lexico-semantic tracts in the ventral stream. This distinction was not evident in the right hemisphere. However, the distribution of tracts exposed was, overall, mirrored relative to those in the left hemisphere network. In presurgical practice, mapping and tracking of language pathways may profit from these findings and should consider inclusion of the Action Naming task, particularly for lesions in ventral subcortical regions.

12.
J Clin Neurophysiol ; 37(2): 140-149, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30334832

RESUMEN

PURPOSE: The supplementary motor area is involved in the planning and coordination of movement sequences. This study investigates the potential of repetitive navigated transcranial magnetic stimulation for systematic mapping of the supplementary motor area by interfering with normal movement coordination processing. METHODS: Ten healthy females (median age: 23.5 years) performed the Jebsen-Taylor Hand Function Test, first without stimulation (baseline) and afterward during application of repetitive navigated transcranial magnetic stimulation with 10 Hz to 6 cortical sites located within the supplementary motor area of both hemispheres. The test completion times (TCTs) were then compared between baseline performances and performances during stimulation. RESULTS: We found significant slowing of TCTs in simulated page turning (baseline TCT 3.68 ± 0.67 seconds vs. stimulation TCT 4.04 ± 0.63 seconds, P = 0.0136), lifting small objects (baseline TCT 5.11 ± 0.72 seconds vs. stimulation TCT 5.47 ± 0.66 seconds, P = 0.0010), and simulated feeding (baseline TCT 6.10 ± 0.73 seconds vs. stimulation TCT 6.59 ± 0.81 seconds, P = 0.0027). Three other subtests were not affected, whereas one subtest was performed significantly faster (baseline TCT 17.09 ± 7.31 seconds vs. stimulation TCT 15.44 ± 5.72 seconds, P = 0.0073) under stimulation. CONCLUSIONS: Repetitive navigated transcranial magnetic stimulation is capable of influencing the performance of healthy participants in a task relying on hand coordination. Our approach can serve as a mapping tool for the supplementary motor area, potentially relevant for preoperative diagnostics in patients with brain tumors, epilepsy, or other brain lesions to improve outcome and potentially predict clinical course and postoperative recovery.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Femenino , Mano , Voluntarios Sanos , Humanos , Desempeño Psicomotor/fisiología , Adulto Joven
13.
Brain Sci ; 10(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352857

RESUMEN

Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.

14.
Brain Sci ; 10(7)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630166

RESUMEN

To date, the structural characteristics that distinguish language-involved from non-involved cortical areas are largely unclear. Particularly in patients suffering from language-eloquent brain tumors, reliable mapping of the cortico-subcortical language network is of high clinical importance to prepare and guide safe tumor resection. To investigate differences in structural characteristics between language-positive and language-negative areas, 20 patients (mean age: 63.2 ± 12.9 years, 16 males) diagnosed with language-eloquent left-hemispheric glioblastoma multiforme (GBM) underwent preoperative language mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging fiber tracking (DTI FT). The number of language-positive and language-negative points as well as the gray matter intensity (GMI), normalized volumes of U-fibers, interhemispheric fibers, and fibers projecting to the cerebellum were assessed and compared between language-positive and language-negative nTMS mappings and set in correlation with aphasia grades. We found significantly lower GMI for language-positive nTMS points (5.7 ± 1.7 versus 7.1 ± 1.6, p = 0.0121). Furthermore, language-positive nTMS points were characterized by an enhanced connectivity profile, i.e., these points showed a significantly higher ratio in volumes for U-fibers (p ≤ 0.0056), interhemispheric fibers (p = 0.0494), and fibers projecting to the cerebellum (p = 0.0094). The number of language-positive nTMS points (R ≥ 0.4854, p ≤ 0.0300) as well as the ratio in volumes for U-fibers (R ≤ -0.4899, p ≤ 0.0283) were significantly associated with aphasia grades, as assessed pre- or postoperatively and during follow-up examinations. In conclusion, this study provides evidence for structural differences on cortical and subcortical levels between language-positive and language-negative areas, as detected by nTMS language mapping. The results may further increase confidence in the technique of nTMS language mapping and nTMS-based tractography in the direct clinical setting. Future studies may confirm our results in larger cohorts and may expand the findings to patients with other tumor entities than GBM.

15.
Clin Neuroradiol ; 30(1): 123-135, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30519814

RESUMEN

PURPOSE: In patients with supratentorial lesions diffusion tensor imaging fiber tracking (DTI-FT) is increasingly used to visualize subcortical fiber courses. Navigated transcranial magnetic stimulation (nTMS) was applied in this study to reveal specific cortical functions by investigating the particular language errors elicited by stimulation. To make DTI-FT more function-specific, the identified language-positive nTMS spots were used as regions of interest (ROIs). METHODS: In this study 40 patients (mean age 53.8 ± 16.0 years) harboring language-eloquent left hemispheric lesions underwent preoperative nTMS language mapping. All induced error categories were separately defined as a ROI and used for function-specific nTMS-based DTI-FT. The fractions of patients showing various subcortical language-related pathways and the fibers-per-tract ratio (number of visualized fibers divided by the number of visualized tracts) were evaluated and compared for tractography with the single error types against less specific tractography including all identified cortical language sites (all errors except hesitations). RESULTS: The nTMS-based DTI-FT using all errors except hesitations led to high fractions of visualized tracts (81.1% of patients), with a fibers-per-tract ratio of 538.4 ± 340.5. When only using performance errors, a predominant visualization of the superior longitudinal fascicle (SLF) occurred, which is known to be involved in articulatory processes. Fibers-per-tract ratios were comparatively stable for all single error categories when compared to all errors except hesitations (p > 0.05). CONCLUSION: This is one of the first studies aiming on function-specific tractography. The results demonstrated that when using different error categories as ROIs, more detailed nTMS-based DTI-FT and, therefore, potentially superior intraoperative guidance becomes possible.


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/patología , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Lenguaje , Estimulación Magnética Transcraneal/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cuidados Preoperatorios/métodos , Adulto Joven
16.
Sci Rep ; 9(1): 17744, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780823

RESUMEN

Navigated transcranial magnetic stimulation (nTMS) over the supplementary motor area (SMA) may impact fine motor skills. This study evaluates different nTMS parameters in their capacity to affect fine motor performance on the way to develop an SMA mapping protocol. Twenty healthy volunteers performed a variety of fine motor tests during baseline and nTMS to the SMA using 5 Hz, 10 Hz, and theta-burst stimulation (TBS). Effects on performance were measured by test completion times (TCTs), standard deviation of inter-tap interval (SDIT), and visible coordination problems (VCPs). The predominant stimulation effect was slowing of TCTs, i.e. a slowdown of test performances during stimulation. Furthermore, participants exhibited VCPs like accidental use of contralateral limbs or inability to coordinate movements. More instances of significant differences between baseline and stimulation occurred during stimulation of the right hemisphere compared to left-hemispheric stimulation. In conclusion, nTMS to the SMA could enable new approaches in neuroscience and enable structured mapping approaches. Specifically, this study supports interhemispheric differences in motor control as right-hemispheric stimulation resulted in clearer impairments. The application of our nTMS-based setup to assess the function of the SMA should be applied in patients with changed anatomo-functional representations as the next step, e.g. among patients with eloquent brain tumors.


Asunto(s)
Corteza Motora/fisiología , Destreza Motora , Estimulación Magnética Transcraneal , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino , Corteza Motora/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA