Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Epilepsy Behav ; 151: 109609, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160578

RESUMEN

BACKGROUND: Recent technological advancements offer new ways to monitor and manage epilepsy. The adoption of these devices in routine clinical practice will strongly depend on patient acceptability and usability, with their perspectives being crucial. Previous studies provided feedback from patients, but few explored the experience of them using independently multiple devices independently at home. PURPOSE: The study, assessed through a mixed methods design, the direct experiences of people with epilepsy independently using a non-invasive monitoring system (EEG@HOME) for an extended duration of 6 months, at home. We aimed to investigate factors affecting engagement, gather qualitative insights, and provide recommendations for future home epilepsy monitoring systems. MATERIALS AND METHODS: Adults with epilepsy independently were trained to use a wearable dry EEG system, a wrist-worn device, and a smartphone app for seizure tracking and behaviour monitoring for 6 months at home. Monthly acceptability questionnaires (PSSUQ, SUS) and semi-structured interviews were conducted to explore participant experience. Adherence with the procedure, acceptability scores and systematic thematic analysis of the interviews, focusing on the experience with the procedure, motivation and benefits and opinion about the procedure were assessed. RESULTS: Twelve people with epilepsy took part into the study for an average of 193.8 days (range 61 to 312) with a likelihood of using the system at six months of 83 %. The e-diary and the smartwatch were highly acceptable and preferred to a wearable EEG system (PSSUQ score of 1.9, 1.9, 2.4). Participants showed an acceptable level of adherence with all solutions (Average usage of 63 %, 66 %, 92 %) reporting more difficulties using the EEG twice a day and remembering to complete the daily behavioural questionnaires. Clear information and training, continuous remote support, perceived direct and indirect benefits and the possibility to have a flexible, tailored to daily routine monitoring were defined as key factors to ensure compliance with long-term monitoring systems. CONCLUSIONS: EEG@HOME study demonstrated people with epilepsy' interest and ability in active health monitoring using new technologies. Remote training and support enable independent home use of new non-invasive technologies, but to ensure long term acceptability and usability systems will require to be integrated into patients' routines, include healthcare providers, and offer continuous support and personalized feedback.


Asunto(s)
Epilepsia , Adulto , Humanos , Estudios de Factibilidad , Epilepsia/diagnóstico , Personal de Salud , Encuestas y Cuestionarios , Electroencefalografía
2.
JMIR Res Protoc ; 10(3): e25309, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33739290

RESUMEN

BACKGROUND: Epileptic seizures are spontaneous events that severely affect the lives of patients due to their recurrence and unpredictability. The integration of new wearable and mobile technologies to collect electroencephalographic (EEG) and extracerebral signals in a portable system might be the solution to prospectively identify times of seizure occurrence or propensity. The performances of several seizure detection devices have been assessed by validated studies, and patient perspectives on wearables have been explored to better match their needs. Despite this, there is a major gap in the literature on long-term, real-life acceptability and performance of mobile technology essential to managing chronic disorders such as epilepsy. OBJECTIVE: EEG@HOME is an observational, nonrandomized, noninterventional study that aims to develop a new feasible procedure that allows people with epilepsy to independently, continuously, and safely acquire noninvasive variables at home. The data collected will be analyzed to develop a general model to predict periods of increased seizure risk. METHODS: A total of 12 adults with a diagnosis of pharmaco-resistant epilepsy and at least 20 seizures per year will be recruited at King's College Hospital, London. Participants will be asked to self-apply an easy and portable EEG recording system (ANT Neuro) to record scalp EEG at home twice daily. From each serial EEG recording, brain network ictogenicity (BNI), a new biomarker of the propensity of the brain to develop seizures, will be extracted. A noninvasive wrist-worn device (Fitbit Charge 3; Fitbit Inc) will be used to collect non-EEG biosignals (heart rate, sleep quality index, and steps), and a smartphone app (Seer app; Seer Medical) will be used to collect data related to seizure occurrence, medication taken, sleep quality, stress, and mood. All data will be collected continuously for 6 months. Standardized questionnaires (the Post-Study System Usability Questionnaire and System Usability Scale) will be completed to assess the acceptability and feasibility of the procedure. BNI, continuous wrist-worn sensor biosignals, and electronic survey data will be correlated with seizure occurrence as reported in the diary to investigate their potential values as biomarkers of seizure risk. RESULTS: The EEG@HOME project received funding from Epilepsy Research UK in 2018 and was approved by the Bromley Research Ethics Committee in March 2020. The first participants were enrolled in October 2020, and we expect to publish the first results by the end of 2022. CONCLUSIONS: With the EEG@HOME study, we aim to take advantage of new advances in remote monitoring technology, including self-applied EEG, to investigate the feasibility of long-term disease self-monitoring. Further, we hope our study will bring new insights into noninvasively collected personalized risk factors of seizure occurrence and seizure propensity that may help to mitigate one of the most difficult aspects of refractory epilepsy: the unpredictability of seizure occurrence. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/25309.

3.
J Neural Eng ; 14(3): 036005, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28224972

RESUMEN

OBJECTIVE: We present the first generic theoretical formulation of the co-adaptive learning problem and give a simple example of two interacting linear learning systems, a human and a machine. APPROACH: After the description of the training protocol of the two learning systems, we define a simple linear model where the two learning agents are coupled by a joint loss function. The simplicity of the model allows us to find learning rules for both human and machine that permit computing theoretical simulations. MAIN RESULTS: As seen in simulations, an astonishingly rich structure is found for this eco-system of learners. While the co-adaptive learners are shown to easily stall or get out of sync for some parameter settings, we can find a broad sweet spot of parameters where the learning system can converge quickly. It is defined by mid-range learning rates on the side of the learning machine, quite independent of the human in the loop. Despite its simplistic assumptions the theoretical study could be confirmed by a real-world experimental study where human and machine co-adapt to perform cursor control under distortion. Also in this practical setting the mid-range learning rates yield the best performance and behavioral ratings. SIGNIFICANCE: The results presented in this mathematical study allow the computation of simple theoretical simulations and performance of real experimental paradigms. Additionally, they are nicely in line with previous results in the BCI literature.


Asunto(s)
Teoría del Juego , Aprendizaje/fisiología , Modelos Lineales , Aprendizaje Automático , Sistemas Hombre-Máquina , Modelos Neurológicos , Animales , Simulación por Computador , Humanos
4.
IEEE Trans Neural Syst Rehabil Eng ; 25(12): 2249-2257, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28727555

RESUMEN

In this paper, we present and analyze an event distribution system for brain-computer interfaces. Events are commonly used to mark and describe incidents during an experiment and are therefore critical for later data analysis or immediate real-time processing. The presented approach, called Tools for brain-computer interaction interface D (TiD), delivers messages in XML format via a buslike system using transmission control protocol connections or shared memory. A dedicated server dispatches TiD messages to distributed or local clients. The TiD message is designed to be flexible and contains time stamps for event synchronization, whereas events describe incidents, which occur during an experiment. TiD was tested extensively toward stability and latency. The effect of an occurring event jitter was analyzed and benchmarked on a reference implementation under different conditions as gigabit and 100-Mb Ethernet or Wi-Fi with a different number of event receivers. A 3-dB signal attenuation, which occurs when averaging jitter influenced trials aligned by events, is starting to become visible at around 1-2 kHz in the case of a gigabit connection. Mean event distribution times across operating systems are ranging from 0.3 to 0.5ms for a gigabit network connection for 106 events. Results for other environmental conditions are available in this paper. References already using TiD for event distribution are provided showing the applicability of TiD for event delivery with distributed or local clients.


Asunto(s)
Benchmarking , Interfaces Cerebro-Computador , Algoritmos , Procesamiento Automatizado de Datos , Diseño de Equipo , Potenciales Evocados Somatosensoriales , Humanos , Programas Informáticos , Tecnología Inalámbrica
5.
PLoS One ; 9(7): e102504, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25068464

RESUMEN

Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model.


Asunto(s)
Interfaces Cerebro-Computador , Adulto , Calibración , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
6.
J Neural Eng ; 10(3): 036025, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23685458

RESUMEN

OBJECTIVE: In brain-computer interface (BCI) research, systems based on event-related potentials (ERP) are considered particularly successful and robust. This stems in part from the repeated stimulation which counteracts the low signal-to-noise ratio in electroencephalograms. Repeated stimulation leads to an optimization problem, as more repetitions also cost more time. The optimal number of repetitions thus represents a data-dependent trade-off between the stimulation time and the obtained accuracy. Several methods for dealing with this have been proposed as 'early stopping', 'dynamic stopping' or 'adaptive stimulation'. Despite their high potential for BCI systems at the patient's bedside, those methods are typically ignored in current BCI literature. The goal of the current study is to assess the benefit of these methods. APPROACH: This study assesses for the first time the existing methods on a common benchmark of both artificially generated data and real BCI data of 83 BCI sessions, allowing for a direct comparison between these methods in the context of text entry. MAIN RESULTS: The results clearly show the beneficial effect on the online performance of a BCI system, if the trade-off between the number of stimulus repetitions and accuracy is optimized. All assessed methods work very well for data of good subjects, and worse for data of low-performing subjects. Most methods, however, are robust in the sense that they do not reduce the performance below the baseline of a simple no stopping strategy. SIGNIFICANCE: Since all methods can be realized as a module between the BCI and an application, minimal changes are needed to include these methods into existing BCI software architectures. Furthermore, the hyperparameters of most methods depend to a large extend on only a single variable-the discriminability of the training data. For the convenience of BCI practitioners, the present study proposes linear regression coefficients for directly estimating the hyperparameters from the data based on this discriminability. The data that were used in this publication are made publicly available to benchmark future methods.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Interfaces Cerebro-Computador , Encéfalo/fisiología , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Artif Intell Med ; 59(2): 71-80, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24076341

RESUMEN

OBJECTIVE: The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. METHODS: Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. RESULTS: The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the user's clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies on both categories, the visual paradigm could be used with lower cognitive workload. Besides attention and working memory, several other neurophysiological and -psychological indicators - and the role they play in the BCIs at hand - are discussed. CONCLUSION: The user's performance on the first BCI paradigm would typically have excluded her from further ERP-based BCI studies. However, this study clearly shows that, with the numerous paradigms now at our disposal, the pursuit for a functioning BCI system should not be stopped after an initial failed attempt.


Asunto(s)
Interfaces Cerebro-Computador , Inteligencia Artificial , Electroencefalografía , Femenino , Humanos , Persona de Mediana Edad , Pruebas Neuropsicológicas , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular , Encuestas y Cuestionarios
8.
Artículo en Inglés | MEDLINE | ID: mdl-23366433

RESUMEN

INTRODUCTION: In the field of Brain-Computer Interfaces (BCI), the original two-class oddball paradigm has been extended to multiple stimuli with balanced probabilities and random presentation sequences. Exploiting the differences between standard and deviant ERP responses, these multi-class paradigms are suitable for communication and control. METHODS: The present study investigates the effect of giving up the randomness of stimulation sequences in favor of a repeated, predictable pattern. Data of healthy subjects (n=10) who performed a single session with a 6-class spatial auditory ERP paradigm were analyzed offline. Their auditory evoked potentials (AEP) resulting from the potentially simpler task (using fixed sequences) are compared with the AEP evoked by pseudo-randomized stimulation sequences. RESULTS: Class-discriminative EEG responses between target and non-target stimuli were observed for both conditions. The binary classification error estimated for standard epochs of was comparable for both conditions (random: 24%, fixed: 25%). Expanding the standard epochs to include pre-stimulus intervals, we found that the regular structure of the fixed sequence can be exploited. Compared to the standard epoch, the MSE improves by 7%, while in the random condition an improvement could not be observed.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados/fisiología , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-23367468

RESUMEN

Giving direct, continuous feedback on a brain state is common practice in motor imagery based brain-computer interfaces (BCI), but has not been reported for BCIs based on event-related potentials (ERP), where feedback is only given once after a sequence of stimuli. Potentially, direct feedback could allow the user to adjust his strategy during a running trial to obtain the required response. In order to test the usefulness of such feedback, directionally congruent vibrotactile feedback was given during an online auditory BCI experiment. Users received either no feedback, short feedback pulses or continuous feedback. The feedback conditions showed reduced performance both on a behavioral task and in terms of classification accuracy. Several explanations are discussed that give interesting starting points for further research on this topic.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados , Retroalimentación Sensorial , Interfaz Usuario-Computador , Estimulación Acústica , Adulto , Conducta , Encéfalo/patología , Calibración , Electroencefalografía/métodos , Femenino , Humanos , Imágenes en Psicoterapia , Masculino , Persona de Mediana Edad , Destreza Motora , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Tacto , Adulto Joven
10.
Front Neurosci ; 5: 112, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22016719

RESUMEN

Representing an intuitive spelling interface for brain-computer interfaces (BCI) in the auditory domain is not straight-forward. In consequence, all existing approaches based on event-related potentials (ERP) rely at least partially on a visual representation of the interface. This online study introduces an auditory spelling interface that eliminates the necessity for such a visualization. In up to two sessions, a group of healthy subjects (N = 21) was asked to use a text entry application, utilizing the spatial cues of the AMUSE paradigm (Auditory Multi-class Spatial ERP). The speller relies on the auditory sense both for stimulation and the core feedback. Without prior BCI experience, 76% of the participants were able to write a full sentence during the first session. By exploiting the advantages of a newly introduced dynamic stopping method, a maximum writing speed of 1.41 char/min (7.55 bits/min) could be reached during the second session (average: 0.94 char/min, 5.26 bits/min). For the first time, the presented work shows that an auditory BCI can reach performances similar to state-of-the-art visual BCIs based on covert attention. These results represent an important step toward a purely auditory BCI.

11.
Front Neurosci ; 5: 99, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21909321

RESUMEN

Brain-computer interfaces (BCIs) based on event related potentials (ERPs) strive for offering communication pathways which are independent of muscle activity. While most visual ERP-based BCI paradigms require good control of the user's gaze direction, auditory BCI paradigms overcome this restriction. The present work proposes a novel approach using auditory evoked potentials for the example of a multiclass text spelling application. To control the ERP speller, BCI users focus their attention to two-dimensional auditory stimuli that vary in both, pitch (high/medium/low) and direction (left/middle/right) and that are presented via headphones. The resulting nine different control signals are exploited to drive a predictive text entry system. It enables the user to spell a letter by a single nine-class decision plus two additional decisions to confirm a spelled word. This paradigm - called PASS2D - was investigated in an online study with 12 healthy participants. Users spelled with more than 0.8 characters per minute on average (3.4 bits/min) which makes PASS2D a competitive method. It could enrich the toolbox of existing ERP paradigms for BCI end users like people with amyotrophic lateral sclerosis disease in a late stage.

12.
Artículo en Inglés | MEDLINE | ID: mdl-22255357

RESUMEN

Brain-computer interfaces based on event-related potentials face a trade-off between the speed and accuracy of the system, as both depend on the number of iterations. Increasing the number of iterations leads to a higher accuracy but reduces the speed of the system. This trade-off is generally dealt with by finding a fixed number of iterations that give a good result on the calibration data. We show here that this method is sub optimal and increases the performance significantly in only one out of five datasets. Several alternative methods have been described in literature, and we test the generalization of four of them. One method, called rank diff, significantly increased the performance over all datasets. These findings are important, as they show that 1) one should be cautious when reporting the potential performance of a BCI based on post-hoc offline performance curves and 2) simple methods are available that do boost performance.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados , Sistemas Hombre-Máquina , Humanos
13.
Front Neuroinform ; 5: 30, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22131973

RESUMEN

The aim of this work is to present the development of a hybrid Brain-Computer Interface (hBCI) which combines existing input devices with a BCI. Thereby, the BCI should be available if the user wishes to extend the types of inputs available to an assistive technology system, but the user can also choose not to use the BCI at all; the BCI is active in the background. The hBCI might decide on the one hand which input channel(s) offer the most reliable signal(s) and switch between input channels to improve information transfer rate, usability, or other factors, or on the other hand fuse various input channels. One major goal therefore is to bring the BCI technology to a level where it can be used in a maximum number of scenarios in a simple way. To achieve this, it is of great importance that the hBCI is able to operate reliably for long periods, recognizing and adapting to changes as it does so. This goal is only possible if many different subsystems in the hBCI can work together. Since one research institute alone cannot provide such different functionality, collaboration between institutes is necessary. To allow for such a collaboration, a new concept and common software framework is introduced. It consists of four interfaces connecting the classical BCI modules: signal acquisition, preprocessing, feature extraction, classification, and the application. But it provides also the concept of fusion and shared control. In a proof of concept, the functionality of the proposed system was demonstrated.

14.
PLoS One ; 5(4): e9813, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20368976

RESUMEN

Most P300-based brain-computer interface (BCI) approaches use the visual modality for stimulation. For use with patients suffering from amyotrophic lateral sclerosis (ALS) this might not be the preferable choice because of sight deterioration. Moreover, using a modality different from the visual one minimizes interference with possible visual feedback. Therefore, a multi-class BCI paradigm is proposed that uses spatially distributed, auditory cues. Ten healthy subjects participated in an offline oddball task with the spatial location of the stimuli being a discriminating cue. Experiments were done in free field, with an individual speaker for each location. Different inter-stimulus intervals of 1000 ms, 300 ms and 175 ms were tested. With averaging over multiple repetitions, selection scores went over 90% for most conditions, i.e., in over 90% of the trials the correct location was selected. One subject reached a 100% correct score. Corresponding information transfer rates were high, up to an average score of 17.39 bits/minute for the 175 ms condition (best subject 25.20 bits/minute). When presenting the stimuli through a single speaker, thus effectively canceling the spatial properties of the cue, selection scores went down below 70% for most subjects. We conclude that the proposed spatial auditory paradigm is successful for healthy subjects and shows promising results that may lead to a fast BCI that solely relies on the auditory sense.


Asunto(s)
Estimulación Acústica/métodos , Encéfalo/fisiología , Señales (Psicología) , Interfaz Usuario-Computador , Adulto , Esclerosis Amiotrófica Lateral/fisiopatología , Humanos , Factores de Tiempo
15.
Artículo en Inglés | MEDLINE | ID: mdl-21096889

RESUMEN

P300-based Brain Computer Interfaces offer communication pathways which are independent of muscle activity. Mostly visual stimuli, e.g. blinking of different letters are used as a paradigm of interaction. Neural degenerative diseases like amyotrophic lateral sclerosis (ALS) also cause a decrease in sight, but the ability of hearing is usually unaffected. Therefore, the use of the auditory modality might be preferable. This work presents a multiclass BCI paradigm using two-dimensional auditory stimuli: cues are varying in pitch (high/medium/low) and location (left/middle/right). The resulting nine different classes are embedded in a predictive text system, enabling to spell a letter with a 9-class decision. Moreover, an unbalanced subtrial selection is investigated and compared to the well-established sequence-wise paradigm. Twelve healthy subjects participated in an online study to investigate these approaches.


Asunto(s)
Estimulación Acústica , Interfaz Usuario-Computador , Adulto , Algoritmos , Femenino , Humanos , Masculino
16.
Artículo en Inglés | MEDLINE | ID: mdl-21096199

RESUMEN

Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.


Asunto(s)
Encéfalo/patología , Adulto , Ingeniería Biomédica/métodos , Computadores , Electroencefalografía/métodos , Potenciales Relacionados con Evento P300 , Potenciales Evocados , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Factores de Tiempo , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA