Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 31: 106-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813365

RESUMEN

The vasculature consists of an extensively branched network of blood and lymphatic vessels that ensures the efficient circulation and thereby the supply of all tissues with oxygen and nutrients. Research within the last decade has tremendously advanced our understanding of how this complex network is formed, how angiogenic growth is controlled and how differences between individual endothelial cells contribute to achieving this complex pattern. The small size and the optical clarity of the zebrafish embryo in combination with the advancements in imaging technologies cleared the way for the zebrafish as an important in vivo model for elucidating the mechanisms of angiogenesis. In this review we discuss the recent contributions of the analysis of zebrafish vascular development on how vessels establish their characteristic morphology and become patent. We focus on the morphogenetic cellular behaviors as well as the molecular mechanisms that drive these processes in the developing zebrafish embryo.


Asunto(s)
Neovascularización Fisiológica , Pez Cebra , Animales , Endotelio Vascular/citología , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Pez Cebra/embriología
2.
Development ; 140(13): 2776-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23698350

RESUMEN

The formation and lumenization of blood vessels has been studied in some detail, but there is little understanding of the morphogenetic mechanisms by which endothelial cells (ECs) forming large caliber vessels aggregate, align themselves and finally form a lumen that can support blood flow. Here, we focus on the development of the zebrafish common cardinal veins (CCVs), which collect all the blood from the embryo and transport it back to the heart. We show that the angioblasts that eventually form the definitive CCVs become specified as a separate population distinct from the angioblasts that form the lateral dorsal aortae. The subsequent development of the CCVs represents a novel mechanism of vessel formation, during which the ECs delaminate and align along the inner surface of an existing luminal space. Thereby, the CCVs are initially established as open-ended endothelial tubes, which extend as single EC sheets along the flow routes of the circulating blood and eventually enclose the entire lumen in a process that we term 'lumen ensheathment'. Furthermore, we found that the initial delamination of the ECs as well as the directional migration within the EC sheet depend on Cadherin 5 function. By contrast, EC proliferation within the growing CCV is controlled by Vascular endothelial growth factor C, which is provided by circulating erythrocytes. Our findings not only identify a novel mechanism of vascular lumen formation, but also suggest a new form of developmental crosstalk between hematopoietic and endothelial cell lineages.


Asunto(s)
Embrión no Mamífero/metabolismo , Venas/embriología , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Angiogenesis ; 18(4): 463-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26198291

RESUMEN

Analysis of developmental angiogenesis can help to identify regulatory networks, which also contribute to disease-related vascular growth. Vascular endothelial growth factors (Vegf) drive angiogenic processes such as sprouting, endothelial cell (EC) migration and proliferation. However, how Vegf expression is regulated during development is not well understood. By analyzing developmental zebrafish angiogenesis, we have identified Metallothionein 2 (Mt2) as a novel regulator of vegfc expression. While Metallothioneins (Mts) have been extensively analyzed for their capability of regulating homeostasis and metal detoxification, we demonstrate that Mt2 is required for EC migration, proliferation and angiogenic sprouting upstream of vegfc expression. We further demonstrate that another Mt family member cannot compensate Mt2 deficiency and therefore postulate that Mt2 regulates angiogenesis independent of its canonical Mt function. Our data not only reveal a non-canonical function of Mt2 in angiogenesis, but also propose Mt2 as a novel regulator of vegfc expression.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Metalotioneína/metabolismo , Neovascularización Fisiológica/fisiología , Transcripción Genética/fisiología , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Células Endoteliales/citología , Metalotioneína/genética , Factor C de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Elife ; 92020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955436

RESUMEN

To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Quimiocinas/genética , Morfogénesis/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Vasos Sanguíneos/metabolismo , Quimiocinas/metabolismo , Células Endoteliales/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Elife ; 42015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26017639

RESUMEN

A key step in the de novo formation of the embryonic vasculature is the migration of endothelial precursors, the angioblasts, to the position of the future vessels. To form the first axial vessels, angioblasts migrate towards the midline and coalesce underneath the notochord. Vascular endothelial growth factor has been proposed to serve as a chemoattractant for the angioblasts and to regulate this medial migration. Here we challenge this model and instead demonstrate that angioblasts rely on their intrinsic expression of Apelin receptors (Aplr, APJ) for their migration to the midline. We further show that during this angioblast migration Apelin receptor signaling is mainly triggered by the recently discovered ligand Elabela (Ela). As neither of the ligands Ela or Apelin (Apln) nor their receptors have previously been implicated in regulating angioblast migration, we hereby provide a novel mechanism for regulating vasculogenesis, with direct relevance to physiological and pathological angiogenesis.


Asunto(s)
Movimiento Celular/fisiología , Quimiocinas/metabolismo , Células Endoteliales/citología , Células Progenitoras Endoteliales/fisiología , Modelos Biológicos , Neovascularización Fisiológica/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Clonación Molecular , Cartilla de ADN/genética , Células Progenitoras Endoteliales/metabolismo , Humanos , Hibridación in Situ , Mutagénesis , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA